Graphene, an atomically thin sheet of carbon atoms arranged in a honeycomb geometry, is attracting unique attention thanks to its extraordinary mechanical, electrical and optical properties. This thesis work concerns the realization of graphene-based nanoscale devices for novel plasmonic applications. We focus mainly on gold/graphene (Au/G) structures designed to display plasmonic multiresonances in the visible range thanks to the nanostructure geometry based on the Sierpinski carpet (SC) deterministic fractal.
Gold/graphene fractals as tunable plasmonic devices
PUTHIYA PURAYIL, NIKHIL SANTH
2018
Abstract
Graphene, an atomically thin sheet of carbon atoms arranged in a honeycomb geometry, is attracting unique attention thanks to its extraordinary mechanical, electrical and optical properties. This thesis work concerns the realization of graphene-based nanoscale devices for novel plasmonic applications. We focus mainly on gold/graphene (Au/G) structures designed to display plasmonic multiresonances in the visible range thanks to the nanostructure geometry based on the Sierpinski carpet (SC) deterministic fractal.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
phdunige_4091802.pdf
accesso aperto
Dimensione
7.78 MB
Formato
Adobe PDF
|
7.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/106588
Il codice NBN di questa tesi è
URN:NBN:IT:UNIGE-106588