Il presente progetto di ricerca riguarda l’applicazione di complessi dicarbenici di metalli di transizione in reazioni di funzionalizzazione/attivazione di legami C-H aromatici. L’efficienza catalitica di questi complessi è stata principalmente valutata nella reazione di idroarilazione di alchini (reazione di Fujiwara), che consiste nell’addizione di areni ad alchini interni o terminali catalizzata da semplici composti di palladio(II), come Pd(OAc)2. Questa reazione decorre in ambiente acido, generalmente acido trifluoroacetico, a temperatura ambiente e presenta una elevata ed inusuale regio- e stereoselettività: si ottengono infatti come prodotti principali i cis-arilalcheni, che sono le olefine termodinamicamente meno favorite. La reazione appare molto promettente dal punto di vista tecnologico, anche perché sono conosciute sia la versione inter- che quella intramolecolare, permettendo quindi la funzionalizzazione di eterocicli aromatici e la sintesi di cumarine. La potenziale applicazione industriale richiede però l'ottimizzazione delle condizioni di reazione, poichè la reazione è spesso lenta, necessita di un eccesso di arene rispetto all’alchino e viene condotta con un elevato tenore di catalizzatore (1-5%), fattore che incide pesantemente sul costo del processo. Altri centri metallici, come Pt(II), Au(I) e Au(III), sono stati impiegati come catalizzatori alternativi, ma la loro reattività sembra essere inferiore a quella mostrata dai composti di palladio(II). Sono stati utilizzati anche centri metallici elettrofilici non nobili, ma la loro reattività è inferiore e/o la loro applicabilità limitata ai soli aril-acetileni. L’obiettivo iniziale di questo progetto di tesi è stato quindi quello di migliorare le rese della reazione e diminuire il tenore di catalizzatore. Leganti carbenici N-eterociclici possono aumentare la stabilità del catalizzatore nelle condizioni di reazione e quindi la sua reattività. I complessi monocarbenici di palladio(II), (IPr)Pd(OAc)2 e (IPr)Pd(OOCCF3)2 (IPr = N,N’-bis(2,6-diisopropylphenyl)-imidazol-2-ylidene) sono infatti gli unici complessi ad essere risultati attivi nella reazione di Fujiwara senza bisogno di promotori, sebbene la loro reattività sia comparabile a quella mostrata da Pd(OAc)2. Nella prima parte di questo lavoro di ricerca è stato dimostrato che complessi dicarbenici di palladio(II) catalizzano la reazione ad 80 °C, con eccellenti conversioni e selettività a basso tenore di catalizzatore (0.1%) e con i reagenti in rapporto equimolare. Questi complessi hanno mostrato una reattività maggiore rispetto al semplice palladio acetato ed al complesso monocarbenico (12) testati nelle stesse condizioni di reazione. Sono stati impiegati in questo studio anche complessi dicarbenici di Pt(II), che si sono dimostrati più attivi dei sistemi catalitici di platino riportati in letteratura. Il protocollo ottimizzato è risultato abbastanza generale per quanto riguarda gli alchini, mentre la sua applicabilità agli areni è al momento limitata a molecole elettron-ricche. Questa è comunque una limitazione di tutti i sistemi catalitici di Pd e Pt riportati in letteratura per l’idroarilazione di alchini. Una seconda parte del lavoro ha riguardato l’identificazione della specie cataliticamente attiva. Studi meccanicistici condotti ad 80 °C, variando sia il legante dicarbenico che i leganti anionici al metallo, hanno mostrato che la specie cataliticamente attiva mantiene il legante dicarbenico nella sua sfera di coordinazione, mentre i leganti anionici vengono rimossi dal complesso attraverso uno scambio con l’anione trifluoroacetato derivante dal solvente acido. L’efficienza catalitica del complesso non dipende dal tipo di leganti anionici, ma dipenda invece dalla natura del legante dicarbenico. Sono stati inoltre effettuati studi elettrochimici per determinare la densità elettronica presente al centro metallico in complessi con diverso legante dicarbenico, con lo scopo di chiarire se l’efficienza del complesso sia principalmente influenzata dalle proprietà elettroniche o da quelle steriche di questo legante e di progettare così il migliore catalizzatore per la reazione. Le voltammetrie cicliche hanno mostrato che la densità elettronica al centro metallico varia a seconda del legante dicarbenico, ma che la scala di potenziali di riduzione Pd(II)-Pd(0) non è correlabile alla scala di attività catalitica. L’efficienza di questo tipo di complessi nella reazione di Fujiwara sembra quindi essere principalmente influenzata dall’ingombro sterico al centro metallico. La successiva ottimizzazione dei parametri di reazione (natura del solvente, concentrazione dei reagenti, temperatura di reazione ed utilizzo di co-catalizzatori) ha permesso di incrementare ulteriormente la selettività della reazione in condizioni di reazione blande. E’ stato infatti dimostrato che in presenza di sali di argento come co-catalizzatori (per esempio AgTFA) la reazione avviene anche a temperatura ambiente, con conversioni maggiori di quelle ottenute con palladio acetato nelle stesse condizioni di reazione. Diversamente che a 80 °C, le reazioni di isomerizzazione a trans-arilalchene (prodotto più stabile termodinamicamente) e le reazioni di idrolisi delle funzioni esteree non avvengono a temperatura ambiente, cosicché la selettività verso il cis-arilalchene viene notevolmente migliorata. Infine, sono state determinate le condizioni sperimentali adatte per estendere questo protocollo sintetico ad eterocicli aromatici, ottenendo anche in questo caso elevate rese nei prodotti. La selettività della reazione verso il prodotto desiderato è però diminuita dalla formazione di addotti eterociclo/alchino 2/1. Analisi preliminari di tipo cinetico hanno inoltre dato una prima indicazione sul tipo di meccanismo coinvolto nella reazione, che non è ancora del tutto chiarito e che potrebbe coinvolgere la metallazione elettrofilica dell’arene oppure una alchenilazione di tipo Friedel-Crafts. La legge cinetica è risultata essere del primo ordine in palladio e, nelle particolari condizioni dei reazione adottate, anche del primo ordine in arene o in alchino. Rimane da valutare la dipendenza della legge cinetica dalla concentrazione di acido, che sembra avere un ruolo importante nel meccanismo di reazione. Deve essere infatti utilizzato in largo eccesso rispetto ai substrati e probabilmente il suo ruolo principale è quello di idrolizzare la specie vinilica di palladio, proposta come intermedio catalitico in entrambi i cicli riportati in letteratura. I complessi dicarbenici di palladio(II) e platino(II) sono stati testati anche in altre reazioni di funzionalizzazione di legami C-H aromatici, come l’orto-funzionalizzazione di acetanilidi.

Functionalisation of aromatic C-H bonds with dicarbene transition metal catalysts

BUSCEMI, GABRIELLA
2009

Abstract

Il presente progetto di ricerca riguarda l’applicazione di complessi dicarbenici di metalli di transizione in reazioni di funzionalizzazione/attivazione di legami C-H aromatici. L’efficienza catalitica di questi complessi è stata principalmente valutata nella reazione di idroarilazione di alchini (reazione di Fujiwara), che consiste nell’addizione di areni ad alchini interni o terminali catalizzata da semplici composti di palladio(II), come Pd(OAc)2. Questa reazione decorre in ambiente acido, generalmente acido trifluoroacetico, a temperatura ambiente e presenta una elevata ed inusuale regio- e stereoselettività: si ottengono infatti come prodotti principali i cis-arilalcheni, che sono le olefine termodinamicamente meno favorite. La reazione appare molto promettente dal punto di vista tecnologico, anche perché sono conosciute sia la versione inter- che quella intramolecolare, permettendo quindi la funzionalizzazione di eterocicli aromatici e la sintesi di cumarine. La potenziale applicazione industriale richiede però l'ottimizzazione delle condizioni di reazione, poichè la reazione è spesso lenta, necessita di un eccesso di arene rispetto all’alchino e viene condotta con un elevato tenore di catalizzatore (1-5%), fattore che incide pesantemente sul costo del processo. Altri centri metallici, come Pt(II), Au(I) e Au(III), sono stati impiegati come catalizzatori alternativi, ma la loro reattività sembra essere inferiore a quella mostrata dai composti di palladio(II). Sono stati utilizzati anche centri metallici elettrofilici non nobili, ma la loro reattività è inferiore e/o la loro applicabilità limitata ai soli aril-acetileni. L’obiettivo iniziale di questo progetto di tesi è stato quindi quello di migliorare le rese della reazione e diminuire il tenore di catalizzatore. Leganti carbenici N-eterociclici possono aumentare la stabilità del catalizzatore nelle condizioni di reazione e quindi la sua reattività. I complessi monocarbenici di palladio(II), (IPr)Pd(OAc)2 e (IPr)Pd(OOCCF3)2 (IPr = N,N’-bis(2,6-diisopropylphenyl)-imidazol-2-ylidene) sono infatti gli unici complessi ad essere risultati attivi nella reazione di Fujiwara senza bisogno di promotori, sebbene la loro reattività sia comparabile a quella mostrata da Pd(OAc)2. Nella prima parte di questo lavoro di ricerca è stato dimostrato che complessi dicarbenici di palladio(II) catalizzano la reazione ad 80 °C, con eccellenti conversioni e selettività a basso tenore di catalizzatore (0.1%) e con i reagenti in rapporto equimolare. Questi complessi hanno mostrato una reattività maggiore rispetto al semplice palladio acetato ed al complesso monocarbenico (12) testati nelle stesse condizioni di reazione. Sono stati impiegati in questo studio anche complessi dicarbenici di Pt(II), che si sono dimostrati più attivi dei sistemi catalitici di platino riportati in letteratura. Il protocollo ottimizzato è risultato abbastanza generale per quanto riguarda gli alchini, mentre la sua applicabilità agli areni è al momento limitata a molecole elettron-ricche. Questa è comunque una limitazione di tutti i sistemi catalitici di Pd e Pt riportati in letteratura per l’idroarilazione di alchini. Una seconda parte del lavoro ha riguardato l’identificazione della specie cataliticamente attiva. Studi meccanicistici condotti ad 80 °C, variando sia il legante dicarbenico che i leganti anionici al metallo, hanno mostrato che la specie cataliticamente attiva mantiene il legante dicarbenico nella sua sfera di coordinazione, mentre i leganti anionici vengono rimossi dal complesso attraverso uno scambio con l’anione trifluoroacetato derivante dal solvente acido. L’efficienza catalitica del complesso non dipende dal tipo di leganti anionici, ma dipenda invece dalla natura del legante dicarbenico. Sono stati inoltre effettuati studi elettrochimici per determinare la densità elettronica presente al centro metallico in complessi con diverso legante dicarbenico, con lo scopo di chiarire se l’efficienza del complesso sia principalmente influenzata dalle proprietà elettroniche o da quelle steriche di questo legante e di progettare così il migliore catalizzatore per la reazione. Le voltammetrie cicliche hanno mostrato che la densità elettronica al centro metallico varia a seconda del legante dicarbenico, ma che la scala di potenziali di riduzione Pd(II)-Pd(0) non è correlabile alla scala di attività catalitica. L’efficienza di questo tipo di complessi nella reazione di Fujiwara sembra quindi essere principalmente influenzata dall’ingombro sterico al centro metallico. La successiva ottimizzazione dei parametri di reazione (natura del solvente, concentrazione dei reagenti, temperatura di reazione ed utilizzo di co-catalizzatori) ha permesso di incrementare ulteriormente la selettività della reazione in condizioni di reazione blande. E’ stato infatti dimostrato che in presenza di sali di argento come co-catalizzatori (per esempio AgTFA) la reazione avviene anche a temperatura ambiente, con conversioni maggiori di quelle ottenute con palladio acetato nelle stesse condizioni di reazione. Diversamente che a 80 °C, le reazioni di isomerizzazione a trans-arilalchene (prodotto più stabile termodinamicamente) e le reazioni di idrolisi delle funzioni esteree non avvengono a temperatura ambiente, cosicché la selettività verso il cis-arilalchene viene notevolmente migliorata. Infine, sono state determinate le condizioni sperimentali adatte per estendere questo protocollo sintetico ad eterocicli aromatici, ottenendo anche in questo caso elevate rese nei prodotti. La selettività della reazione verso il prodotto desiderato è però diminuita dalla formazione di addotti eterociclo/alchino 2/1. Analisi preliminari di tipo cinetico hanno inoltre dato una prima indicazione sul tipo di meccanismo coinvolto nella reazione, che non è ancora del tutto chiarito e che potrebbe coinvolgere la metallazione elettrofilica dell’arene oppure una alchenilazione di tipo Friedel-Crafts. La legge cinetica è risultata essere del primo ordine in palladio e, nelle particolari condizioni dei reazione adottate, anche del primo ordine in arene o in alchino. Rimane da valutare la dipendenza della legge cinetica dalla concentrazione di acido, che sembra avere un ruolo importante nel meccanismo di reazione. Deve essere infatti utilizzato in largo eccesso rispetto ai substrati e probabilmente il suo ruolo principale è quello di idrolizzare la specie vinilica di palladio, proposta come intermedio catalitico in entrambi i cicli riportati in letteratura. I complessi dicarbenici di palladio(II) e platino(II) sono stati testati anche in altre reazioni di funzionalizzazione di legami C-H aromatici, come l’orto-funzionalizzazione di acetanilidi.
2-feb-2009
Inglese
catalysis, hydroarylation, N-heterocyclic carbenes, C-H activation, palladium, platinum
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
TesiGabriellaBuscemipdf.pdf

accesso aperto

Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/107987
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-107987