La robotica sta ormai entrando nella nostra vita. Si possono trovare robot nelle industrie, negli uffici e perfino nelle case. Più i robot sono in contatto con le persone, più aumenta la richiesta di nuove funzionalità e caratteristiche per rendere i robot capaci di agire in caso di necessità, aiutare la gente o di essere di compagnia. Perciò è essenziale avere un modo rapido e facile di insegnare ai robot nuove abilità e questo è proprio l'obiettivo del Robot Learning from Demonstration. Questo paradigma consente di programmare nuovi task in un robot attraverso l'uso di dimostrazioni. Questa tesi propone un nuovo approccio al Robot Learning from Demonstration in grado di apprendere nuove abilità da dimostrazioni eseguite naturalmente da utenti inesperti. A questo scopo, è stato introdotto un innovativo framework per il Robot Learning from Demonstration proponendo nuovi approcci in tutte le sub-unità funzionali: dall'acquisizione dei dati all’elaborazione del movimento, dalla modellazione delle informazioni al controllo del robot. All’interno di questo lavoro è stato proposto un nuovo metodo per estrarre l’ informazione del flusso ottico 3D, combinando dati RGB e di profondità acquisiti tramite telecamere RGB-D introdotte di recente nel mercato consumer. Questo algoritmo calcola i dati di movimento lungo il tempo per riconoscere e classificare le azioni umane. In questa tesi, sono descritte nuove tecniche per rimappare il movimento umano alle articolazioni robotiche. I metodi proposti permettono alle persone di interagire in modo naturale con i robot effettuando un re-targeting intuitivo di tutti i movimenti del corpo. È stato sviluppato un algoritmo di re-targeting del movimento sia per robot umanoidi che per manipolatori, testando entrambi in diverse situazioni. Infine, sono state migliorate le tecniche di modellazione utilizzando un metodo probabilistico: il Donut Mixture Model. Questo modello è in grado di gestire le numerose interpretazioni che persone diverse possono produrre eseguendo un compito. Inoltre, il modello stimato può essere aggiornato utilizzando direttamente tentativi effettuati dal robot. Questa caratteristica è molto importante per ottenere rapidamente traiettorie robot corrette, mediante l’uso di poche dimostrazioni umane. Un ulteriore contributo di questa tesi è la creazione di una serie di nuovi modelli virtuali per i diversi robot utilizzati per testare i nostri algoritmi. Tutti i modelli sviluppati sono compatibili con ROS, in modo che possano essere utilizzati da tutta la comunità di questo framework per la robotica molto diffuso per promuovere la ricerca nel campo. Inoltre, è stato raccolto un nuovo dataset 3D al fine di confrontare diversi algoritmi di riconoscimento delle azioni, il dataset contiene sia informazioni RGB-D provenienti direttamente dal sensore che informazioni sullo scheletro fornite da uno skeleton tracker.

Robot Learning by observing human actions

MICHIELETTO, STEFANO
2014

Abstract

La robotica sta ormai entrando nella nostra vita. Si possono trovare robot nelle industrie, negli uffici e perfino nelle case. Più i robot sono in contatto con le persone, più aumenta la richiesta di nuove funzionalità e caratteristiche per rendere i robot capaci di agire in caso di necessità, aiutare la gente o di essere di compagnia. Perciò è essenziale avere un modo rapido e facile di insegnare ai robot nuove abilità e questo è proprio l'obiettivo del Robot Learning from Demonstration. Questo paradigma consente di programmare nuovi task in un robot attraverso l'uso di dimostrazioni. Questa tesi propone un nuovo approccio al Robot Learning from Demonstration in grado di apprendere nuove abilità da dimostrazioni eseguite naturalmente da utenti inesperti. A questo scopo, è stato introdotto un innovativo framework per il Robot Learning from Demonstration proponendo nuovi approcci in tutte le sub-unità funzionali: dall'acquisizione dei dati all’elaborazione del movimento, dalla modellazione delle informazioni al controllo del robot. All’interno di questo lavoro è stato proposto un nuovo metodo per estrarre l’ informazione del flusso ottico 3D, combinando dati RGB e di profondità acquisiti tramite telecamere RGB-D introdotte di recente nel mercato consumer. Questo algoritmo calcola i dati di movimento lungo il tempo per riconoscere e classificare le azioni umane. In questa tesi, sono descritte nuove tecniche per rimappare il movimento umano alle articolazioni robotiche. I metodi proposti permettono alle persone di interagire in modo naturale con i robot effettuando un re-targeting intuitivo di tutti i movimenti del corpo. È stato sviluppato un algoritmo di re-targeting del movimento sia per robot umanoidi che per manipolatori, testando entrambi in diverse situazioni. Infine, sono state migliorate le tecniche di modellazione utilizzando un metodo probabilistico: il Donut Mixture Model. Questo modello è in grado di gestire le numerose interpretazioni che persone diverse possono produrre eseguendo un compito. Inoltre, il modello stimato può essere aggiornato utilizzando direttamente tentativi effettuati dal robot. Questa caratteristica è molto importante per ottenere rapidamente traiettorie robot corrette, mediante l’uso di poche dimostrazioni umane. Un ulteriore contributo di questa tesi è la creazione di una serie di nuovi modelli virtuali per i diversi robot utilizzati per testare i nostri algoritmi. Tutti i modelli sviluppati sono compatibili con ROS, in modo che possano essere utilizzati da tutta la comunità di questo framework per la robotica molto diffuso per promuovere la ricerca nel campo. Inoltre, è stato raccolto un nuovo dataset 3D al fine di confrontare diversi algoritmi di riconoscimento delle azioni, il dataset contiene sia informazioni RGB-D provenienti direttamente dal sensore che informazioni sullo scheletro fornite da uno skeleton tracker.
30-gen-2014
Inglese
Robot Learning from Demonstration, Machine Learning, Robotics, RGB-D data, Motion Re-targeting, Action Recognition, Natural Demonstrations, 3D Motion
Università degli studi di Padova
130
File in questo prodotto:
File Dimensione Formato  
Michieletto_-_ROBOT_LEARNING_BY_OBSERVING_HUMAN_ACTIONS.pdf

accesso aperto

Dimensione 9.71 MB
Formato Adobe PDF
9.71 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/108623
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-108623