Il problema dell'apprendimento della reppresentazione ottima per un task specifico è divenuto un importante argomento nella comunità dell'apprendimento automatico. In questo campo, le architetture di tipo deep sono attualmente le più avanzate tra i possibili algoritmi di apprendimento automatico. Esse generano modelli che utilizzando alti gradi di astrazione e sono in grado di scoprire strutture complicate in dataset anche molto ampi. I kernel e le Deep Neural Network (DNN) sono i principali metodi per apprendere una rappresentazione di un problema in modo ricco (cioè deep). Le DNN sfruttano il famoso algoritmo di back-propagation migliorando le prestazioni degli algoritmi allo stato dell'arte in diverse applicazioni reali, come per esempio il riconoscimento vocale, il riconoscimento di oggetti o l'elaborazione di segnali. Tuttavia, gli algoritmi DNN hanno anche delle problematiche, ereditate dalle classiche reti neurali e derivanti dal fatto che esse non sono completamente comprese teoricamente. I problemi principali sono: la complessità della struttura della soluzione, la non chiara separazione tra la fase di apprendimento della rappresentazione ottimale e del modello, i lunghi tempi di training e la convergenza a soluzioni ottime solo localmente (a causa dei minimi locali e del vanishing gradient). Per questi motivi, in questa tesi, proponiamo nuove idee per ottenere rapprensetazioni ottimali sfruttando la teoria dei kernel. I metodi kernel hanno un elegante framework che separa l'algoritmo di apprendimento dalla rappresentazione delle informazioni. D'altro canto, anche i kernel hanno alcune debolezze, per esempio essi non scalano e, per come sono solitamente utilizzati, portano con loro una rappresentazione poco ricca (shallow). In questa tesi, proponiamo nuovi risultati teorici e nuovi algoritmi per cercare di risolvere questi problemi e rendere l'apprendimento dei kernel in grado di generare rappresentazioni più ricche (deeper) ed essere più scalabili. Verrà quindi presentato un nuovo algoritmo in grado di combinare migliaia di kernel deboli con un basso costo computazionale e di memoria. Questa procedura, chiamata EasyMKL, supera i metodi attualmente allo stato dell'arte combinando frammenti di informazione e creando in questo modo il kernel ottimale per uno specifico task. Perseguendo l'idea di creare una famiglia di kernel deboli ottimale, abbiamo creato una nuova misura di valutazione dell'espressività dei kernel, chiamata Spectral Complexity. Sfruttando questa misura siamo in grado di generare famiglia di kernel deboli con una struttura gerarchica nelle feature definendo una nuova proprietà riguardante la monotonicità della Spectral Complexity. Mostriamo la qualità dei nostri kernel deboli sviluppando una nuova metologia per il Multiple Kernel Learning (MKL). In primo luogo, siamo in grado di creare una famiglia ottimale di kernel deboli sfruttando la proprietà di monotinicità della Spectral Complexity; combiniamo quindi la famiglia di kernel deboli ottimale sfruttando EasyMKL e ottenendo un nuovo kernel, specifico per il singolo task; infine, siamo in grado di generare un modello sfruttando il nuovo kernel e kernel machine (per esempio una SVM). Inoltre, in questa tesi sottolineiamo le connessioni tra Distance Metric Learning, Feature Larning e Kernel Learning proponendo un metodo per apprendere la famiglia ottimale di kernel deboli per un algoritmo MKL in un contesto differente, in cui la regola di combinazione è il prodotto componente per componente delle matrici kernel. Questo algoritmo è in grado di generare i parametri ottimali per un kernel RBF anisotropico. Di conseguenza, si crea un naturale collegamento tra il Feature Weighting, le combinazioni dei kernel e l'apprendimento della metrica ottimale per il task. Infine, l'importanza della rappresentazione è anche presa in considerazione in tre task reali, dove affrontiamo differenti problematiche, tra cui: il rumore nei dati, le applicazioni in tempo reale e le grandi moli di dati (Big Data)

Exploiting the structure of feature spaces in kernel learning

DONINI, MICHELE
2016

Abstract

Il problema dell'apprendimento della reppresentazione ottima per un task specifico è divenuto un importante argomento nella comunità dell'apprendimento automatico. In questo campo, le architetture di tipo deep sono attualmente le più avanzate tra i possibili algoritmi di apprendimento automatico. Esse generano modelli che utilizzando alti gradi di astrazione e sono in grado di scoprire strutture complicate in dataset anche molto ampi. I kernel e le Deep Neural Network (DNN) sono i principali metodi per apprendere una rappresentazione di un problema in modo ricco (cioè deep). Le DNN sfruttano il famoso algoritmo di back-propagation migliorando le prestazioni degli algoritmi allo stato dell'arte in diverse applicazioni reali, come per esempio il riconoscimento vocale, il riconoscimento di oggetti o l'elaborazione di segnali. Tuttavia, gli algoritmi DNN hanno anche delle problematiche, ereditate dalle classiche reti neurali e derivanti dal fatto che esse non sono completamente comprese teoricamente. I problemi principali sono: la complessità della struttura della soluzione, la non chiara separazione tra la fase di apprendimento della rappresentazione ottimale e del modello, i lunghi tempi di training e la convergenza a soluzioni ottime solo localmente (a causa dei minimi locali e del vanishing gradient). Per questi motivi, in questa tesi, proponiamo nuove idee per ottenere rapprensetazioni ottimali sfruttando la teoria dei kernel. I metodi kernel hanno un elegante framework che separa l'algoritmo di apprendimento dalla rappresentazione delle informazioni. D'altro canto, anche i kernel hanno alcune debolezze, per esempio essi non scalano e, per come sono solitamente utilizzati, portano con loro una rappresentazione poco ricca (shallow). In questa tesi, proponiamo nuovi risultati teorici e nuovi algoritmi per cercare di risolvere questi problemi e rendere l'apprendimento dei kernel in grado di generare rappresentazioni più ricche (deeper) ed essere più scalabili. Verrà quindi presentato un nuovo algoritmo in grado di combinare migliaia di kernel deboli con un basso costo computazionale e di memoria. Questa procedura, chiamata EasyMKL, supera i metodi attualmente allo stato dell'arte combinando frammenti di informazione e creando in questo modo il kernel ottimale per uno specifico task. Perseguendo l'idea di creare una famiglia di kernel deboli ottimale, abbiamo creato una nuova misura di valutazione dell'espressività dei kernel, chiamata Spectral Complexity. Sfruttando questa misura siamo in grado di generare famiglia di kernel deboli con una struttura gerarchica nelle feature definendo una nuova proprietà riguardante la monotonicità della Spectral Complexity. Mostriamo la qualità dei nostri kernel deboli sviluppando una nuova metologia per il Multiple Kernel Learning (MKL). In primo luogo, siamo in grado di creare una famiglia ottimale di kernel deboli sfruttando la proprietà di monotinicità della Spectral Complexity; combiniamo quindi la famiglia di kernel deboli ottimale sfruttando EasyMKL e ottenendo un nuovo kernel, specifico per il singolo task; infine, siamo in grado di generare un modello sfruttando il nuovo kernel e kernel machine (per esempio una SVM). Inoltre, in questa tesi sottolineiamo le connessioni tra Distance Metric Learning, Feature Larning e Kernel Learning proponendo un metodo per apprendere la famiglia ottimale di kernel deboli per un algoritmo MKL in un contesto differente, in cui la regola di combinazione è il prodotto componente per componente delle matrici kernel. Questo algoritmo è in grado di generare i parametri ottimali per un kernel RBF anisotropico. Di conseguenza, si crea un naturale collegamento tra il Feature Weighting, le combinazioni dei kernel e l'apprendimento della metrica ottimale per il task. Infine, l'importanza della rappresentazione è anche presa in considerazione in tre task reali, dove affrontiamo differenti problematiche, tra cui: il rumore nei dati, le applicazioni in tempo reale e le grandi moli di dati (Big Data)
21-gen-2016
Inglese
representation learning, kernel learning, multiple kernel learning, multitaks learning
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
donini_michele_tesi.pdf

accesso aperto

Dimensione 4.34 MB
Formato Adobe PDF
4.34 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/108944
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-108944