La tesi descrive diversi metodi di stima e monitoraggio di grandezze di plasma utilizzabili anche per applicazioni di controllo in retroazione. Informazioni in tempo reale sullo stato del plasma sono necessarie per l’operazione di qualsiasi dispositivo Tokamak. In piccole macchine, come ISTTOK e Golem il controllo della posizione del centroide della corrente di plasma è sufficiente poiché i flussi termici sono bassi e il plasma si trova in regime “limiter”. In dispositivi più grandi, come RFX-mod, TCV o ASDEX-Upgrade caratterizzati da più complesse forme di plasma e da più elevati flussi termici sulla prima parete, è necessario stimare e controllare la forma del plasma e la localizzazione della deposizione del carico termico sulla prima parete (“strike points” nei regimi con divertore e punto di contatto plasma-parete nei regimi con “limiter”). I risultati degli impulsi di plasma sono anche fortemente influenzati dalla forma dei profili interni di corrente e pressione. Inoltre, anche la frazione di corrente di “bootstrap”, che non può essere direttamente misurata, gioca un ruolo importante nei regimi di operazione dei Tokamak più avanzati. Queste grandezze, collegate ai profili interni, devono essere ben diagnosticate per evitare disruzioni e mitigare le instabilità MHD. La tesi affronta tutti i summenzionati livelli di complessità del controllo, partendo dai più semplici centrati intorno alla misura della posizione del centroide della corrente di plasma in ISTTOK, presentando poi più elaborati metodi di monitoraggio in tempo reale dell’equilibrio e della forma di plasma fino agli strumenti più avanzati per la ricostruzione dei profili interni di plasma, per la mitigazione delle instabilità e per evitare le disruzioni. In questa tesi vengono forniti originali contributi a ciascun gruppo di questi metodi. La prima parte della tesi tratta della misura in tempo reale della posizione del centroide della corrente di plasma in ISTTOK. Nell’ambito di questo lavoro è stato necessario risolvere due problemi principali. Il primo, comune alla maggiore parte dei piccoli dispositivi con una scocca altamente conduttiva, è collegato agli effetti delle correnti parassite indotte nelle strutture conduttive, che alterano il segnale delle diagnostiche magnetiche e, conseguentemente, rendono inutilizzabile la misura della posizione del centroide della corrente di plasma. Questo problema è stato risolto grazie all’implementazione in tempo reale di un semplice modello alle variabili di stato che considera la presenza sia della camera da vuoto sia della scocca ed è in grado di rimuovere l’effetto delle correnti parassite da tutti i 12 sensori magnetici installati in ISTTOK. Il metodo è stato provato anche con dati di RFX-mod e del Tokamak Golem, situato a Praga, nella Repubblica Ceca. Il secondo problema è la non accurata calibrazione delle diagnostiche magnetiche in ISTTOK. Ciò ha richiesto l’uso di un metodo semplice e meno sensibile agli errori di calibrazione. Tale metodo è stato poi validato confrontando la posizione verticale con quella stimata tramite il Fascio di Ioni Pesanti (Heavy Ion Beam). L’algoritmo risultante è sufficientemente affidabile e capace di fornire informazioni sulla posizione del centroide della corrente di plasma sia per il controllo in tempo reale sia per analisi “off-line” post-scarica. È stato inoltre proposto un metodo più avanzato per la misura della posizione del centroide della corrente di plasma da usarsi dopo il miglioramento della diagnostica magnetica programmato nel prossimo futuro. La parte successiva del lavoro è dedicata allo sviluppo degli strumenti per la ricostruzione della forma di plasma e per la misura di parametri macroscopici globali. È stata svolta su RFX-mod, attualmente il più grande dispositivo reversed field pinch (RFP), in grado di operare anche in configurazione Tokamak. In particolare, in questa seconda modalità è iniziato già da qualche anno un programma di scariche a doppio (DN) o singolo nullo (SN) con il fine di eseguire esperimenti di controllo attivo di modi MHD con plasmi in modo H. Questa parte dell’attività di ricerca si è focalizzata nello sviluppo di un algoritmo per una affidabile ricostruzione del contorno di plasma, da utilizzarsi sia in tempo reale che “off-line” in RFX-mod. Tale algoritmo si basa sull’estrapolazione in vuoto del flusso magnetico ed è stato validato confrontandone i risultati con quelli forniti dal codice di equilibrio MAXFEA, solutore a elementi finiti dell’equazione di Grad-Shafranov. L’algoritmo fornisce risultati molto buoni (errore sotto il 2% del raggio minore di plasma) anche in presenza del limitato numero di sensori lungo la circonferenza poloidale in RFX-mod rispetto ai Tokamak standard (8 sensori biassiali per la misura delle componenti poloidale e toroidale del campo magnetico e 8 per la misura del flusso poloidale). Poiché l’algoritmo non fornisce solo la conoscenza del contorno di plasma, ma è in grado di calcolare il campo magnetico e il flusso ovunque nel vuoto, esso può essere usato per la stima di parecchi parametri di equilibrio come βp+li/2 o q95 in analisi post-scarica. Per scariche elongate, βp e li/2 possono essere separati. Il valore di βp fornito da questo algoritmo è quasi identico a quello ottenuto tramite una misura diamagnetica indipendente. L’implementazione in tempo reale ha permesso il calcolo dei segnali di retroazione del sistema di controllo della forma di plasma progettato per l’esecuzione delle scariche con doppio o singolo nullo. Alcuni risultati delle operazioni con controllo di forma sono riportati nella tesi. Il lavoro iniziale sulla ricostruzione e il controllo in tempo reale della forma di plasma hanno aperto la strada agli esperimenti di transizione L-H in scariche puramente ohmiche. Questi esperimenti non hanno mostrato prove di accesso al modo H né durante la fase stazionaria né in quelle transitorie (principalmente crescita e decrescita della corrente) della scarica. Tuttavia, poiché il controllo in retroazione della densità di plasma è stato migliorato in modo significativo, la possibilità di accedere al modo H in scariche puramente ohmiche non è esclusa in campagne future. Dopo questi tentativi iniziali senza buon esito, gli sforzi si sono concentrati sulla possibilità di ottenere la transizione L-H indotta da elettrodo di polarizzazione. Questi esperimenti hanno avuto successo, essendo stati osservati parecchi chiari segni di transizione L-H: la ripida caduta del segnale H alpha, l’incremento della densità di plasma e la formazione del piedistallo al bordo. La descrizione di questi esperimenti è presentata nella tesi. L’ultima parte della tesi è stata dedicata ad uno strumento in corso di sviluppo per migliorare gli attuali metodi di controllo dei profili di corrente, temperatura, pressione di plasma e prevenzione delle disruzioni, denominato RApid Plasma Transport simulatOR (RAPTOR). Questo codice fa da complemento a un semplice insieme di diagnostiche in tempo reale e calcola le informazioni mancanti utilizzando un ridotto insieme di equazioni di trasporto. La tesi contiene la descrizione del codice, specialmente le semplificazioni fisiche fatte per soddisfare i requisiti di velocità di calcolo posti da un’applicazione in tempo reale, e presenta possibili applicazioni nel campo della predizione e prevenzione delle disruzioni. Esperimenti dedicati sono stati eseguiti in RFX-mod per provare un metodo di predizione delle disruzioni dovute alle instabiltà Resistive Wall Mode (RWM) in scariche con q(a)<2 e in TCV per la predizione di disruzioni dovute a limite di densità. In entrambe le classi di disruzione, i profili con denti di sega sono modificati significativamente prima della disruzione, ma la modifica non si riflette nella predizione di RAPTOR. Perciò il periodo dei denti di sega è stato usato come variabile di retroazione: una grande discrepanza tra RAPTOR e il periodo sperimentale dei denti di sega attiva l’allarme di disruzione. Gli esperimenti hanno mostrato che RAPTOR nel suo attuale stato di sviluppo è un valido strumento per la predizione delle disruzioni in plasma ohmici in modo L senza significative variazioni di forma: in RFX-mod, l’allarme di disruzione fu attivato parecchie decine di millisecondi prima della disruzione stessa e in TCV centinaia di millisecondi prima. Il maggiore vantaggio di questo metodo consiste nel suo essere basato sulla fisica del fenomeno, quindi non richiede enormi quantità di dati di scariche per addestrare reti neurali come gli attuali algoritmi. Esso è anche trasferibile da un dispositivo ad un altro, a differenza degli attuali strumenti di predizione delle disruzioni. Tuttavia i futuri strumenti di prevenzione delle disruzioni dovranno essere in grado di trattare plasmi molto più complessi di quelli studiati in questi casi di scariche in modo L ohmiche. L’ultima sezione di questa tesi dà esempi di predizione di disruzione in ASDEX-Upgrade e identifica le lacune che debbono essere colmate prima che RAPTOR diventi un strumento di predizione delle disruzioni pienamente maturo. Prima di tutto, sarà necessario includere tutte le sorgenti di riscaldamento e sostenimento della corrente (“current drive”). Un secondo importante aspetto è l’inclusione della pressione degli ioni veloci, che contribuisce in modo significativo alla totale energia di plasma e influenza la dinamica dei modi MHD, per esempi stabilizzando i denti di sega. Un altro importante pezzo del puzzle è l’accoppiamento di un solutore dell’equazione di Grad-Shafranov in tempo reale con RAPTOR, che può migliorare la qualità della ricostruzione dell’equilibrio, collegata da vicino, per esempio, al controllo delle instabilità NTM. Ultimo, ma non meno importante, un enorme beneficio potrebbe essere ottenuto da una migliore stima in tempo reale del profilo di temperatura elettronica fornita dalla relativa diagnostica.
Real Time Plasma State Monitoring
KUDLACEK, ONDREJ
2016
Abstract
La tesi descrive diversi metodi di stima e monitoraggio di grandezze di plasma utilizzabili anche per applicazioni di controllo in retroazione. Informazioni in tempo reale sullo stato del plasma sono necessarie per l’operazione di qualsiasi dispositivo Tokamak. In piccole macchine, come ISTTOK e Golem il controllo della posizione del centroide della corrente di plasma è sufficiente poiché i flussi termici sono bassi e il plasma si trova in regime “limiter”. In dispositivi più grandi, come RFX-mod, TCV o ASDEX-Upgrade caratterizzati da più complesse forme di plasma e da più elevati flussi termici sulla prima parete, è necessario stimare e controllare la forma del plasma e la localizzazione della deposizione del carico termico sulla prima parete (“strike points” nei regimi con divertore e punto di contatto plasma-parete nei regimi con “limiter”). I risultati degli impulsi di plasma sono anche fortemente influenzati dalla forma dei profili interni di corrente e pressione. Inoltre, anche la frazione di corrente di “bootstrap”, che non può essere direttamente misurata, gioca un ruolo importante nei regimi di operazione dei Tokamak più avanzati. Queste grandezze, collegate ai profili interni, devono essere ben diagnosticate per evitare disruzioni e mitigare le instabilità MHD. La tesi affronta tutti i summenzionati livelli di complessità del controllo, partendo dai più semplici centrati intorno alla misura della posizione del centroide della corrente di plasma in ISTTOK, presentando poi più elaborati metodi di monitoraggio in tempo reale dell’equilibrio e della forma di plasma fino agli strumenti più avanzati per la ricostruzione dei profili interni di plasma, per la mitigazione delle instabilità e per evitare le disruzioni. In questa tesi vengono forniti originali contributi a ciascun gruppo di questi metodi. La prima parte della tesi tratta della misura in tempo reale della posizione del centroide della corrente di plasma in ISTTOK. Nell’ambito di questo lavoro è stato necessario risolvere due problemi principali. Il primo, comune alla maggiore parte dei piccoli dispositivi con una scocca altamente conduttiva, è collegato agli effetti delle correnti parassite indotte nelle strutture conduttive, che alterano il segnale delle diagnostiche magnetiche e, conseguentemente, rendono inutilizzabile la misura della posizione del centroide della corrente di plasma. Questo problema è stato risolto grazie all’implementazione in tempo reale di un semplice modello alle variabili di stato che considera la presenza sia della camera da vuoto sia della scocca ed è in grado di rimuovere l’effetto delle correnti parassite da tutti i 12 sensori magnetici installati in ISTTOK. Il metodo è stato provato anche con dati di RFX-mod e del Tokamak Golem, situato a Praga, nella Repubblica Ceca. Il secondo problema è la non accurata calibrazione delle diagnostiche magnetiche in ISTTOK. Ciò ha richiesto l’uso di un metodo semplice e meno sensibile agli errori di calibrazione. Tale metodo è stato poi validato confrontando la posizione verticale con quella stimata tramite il Fascio di Ioni Pesanti (Heavy Ion Beam). L’algoritmo risultante è sufficientemente affidabile e capace di fornire informazioni sulla posizione del centroide della corrente di plasma sia per il controllo in tempo reale sia per analisi “off-line” post-scarica. È stato inoltre proposto un metodo più avanzato per la misura della posizione del centroide della corrente di plasma da usarsi dopo il miglioramento della diagnostica magnetica programmato nel prossimo futuro. La parte successiva del lavoro è dedicata allo sviluppo degli strumenti per la ricostruzione della forma di plasma e per la misura di parametri macroscopici globali. È stata svolta su RFX-mod, attualmente il più grande dispositivo reversed field pinch (RFP), in grado di operare anche in configurazione Tokamak. In particolare, in questa seconda modalità è iniziato già da qualche anno un programma di scariche a doppio (DN) o singolo nullo (SN) con il fine di eseguire esperimenti di controllo attivo di modi MHD con plasmi in modo H. Questa parte dell’attività di ricerca si è focalizzata nello sviluppo di un algoritmo per una affidabile ricostruzione del contorno di plasma, da utilizzarsi sia in tempo reale che “off-line” in RFX-mod. Tale algoritmo si basa sull’estrapolazione in vuoto del flusso magnetico ed è stato validato confrontandone i risultati con quelli forniti dal codice di equilibrio MAXFEA, solutore a elementi finiti dell’equazione di Grad-Shafranov. L’algoritmo fornisce risultati molto buoni (errore sotto il 2% del raggio minore di plasma) anche in presenza del limitato numero di sensori lungo la circonferenza poloidale in RFX-mod rispetto ai Tokamak standard (8 sensori biassiali per la misura delle componenti poloidale e toroidale del campo magnetico e 8 per la misura del flusso poloidale). Poiché l’algoritmo non fornisce solo la conoscenza del contorno di plasma, ma è in grado di calcolare il campo magnetico e il flusso ovunque nel vuoto, esso può essere usato per la stima di parecchi parametri di equilibrio come βp+li/2 o q95 in analisi post-scarica. Per scariche elongate, βp e li/2 possono essere separati. Il valore di βp fornito da questo algoritmo è quasi identico a quello ottenuto tramite una misura diamagnetica indipendente. L’implementazione in tempo reale ha permesso il calcolo dei segnali di retroazione del sistema di controllo della forma di plasma progettato per l’esecuzione delle scariche con doppio o singolo nullo. Alcuni risultati delle operazioni con controllo di forma sono riportati nella tesi. Il lavoro iniziale sulla ricostruzione e il controllo in tempo reale della forma di plasma hanno aperto la strada agli esperimenti di transizione L-H in scariche puramente ohmiche. Questi esperimenti non hanno mostrato prove di accesso al modo H né durante la fase stazionaria né in quelle transitorie (principalmente crescita e decrescita della corrente) della scarica. Tuttavia, poiché il controllo in retroazione della densità di plasma è stato migliorato in modo significativo, la possibilità di accedere al modo H in scariche puramente ohmiche non è esclusa in campagne future. Dopo questi tentativi iniziali senza buon esito, gli sforzi si sono concentrati sulla possibilità di ottenere la transizione L-H indotta da elettrodo di polarizzazione. Questi esperimenti hanno avuto successo, essendo stati osservati parecchi chiari segni di transizione L-H: la ripida caduta del segnale H alpha, l’incremento della densità di plasma e la formazione del piedistallo al bordo. La descrizione di questi esperimenti è presentata nella tesi. L’ultima parte della tesi è stata dedicata ad uno strumento in corso di sviluppo per migliorare gli attuali metodi di controllo dei profili di corrente, temperatura, pressione di plasma e prevenzione delle disruzioni, denominato RApid Plasma Transport simulatOR (RAPTOR). Questo codice fa da complemento a un semplice insieme di diagnostiche in tempo reale e calcola le informazioni mancanti utilizzando un ridotto insieme di equazioni di trasporto. La tesi contiene la descrizione del codice, specialmente le semplificazioni fisiche fatte per soddisfare i requisiti di velocità di calcolo posti da un’applicazione in tempo reale, e presenta possibili applicazioni nel campo della predizione e prevenzione delle disruzioni. Esperimenti dedicati sono stati eseguiti in RFX-mod per provare un metodo di predizione delle disruzioni dovute alle instabiltà Resistive Wall Mode (RWM) in scariche con q(a)<2 e in TCV per la predizione di disruzioni dovute a limite di densità. In entrambe le classi di disruzione, i profili con denti di sega sono modificati significativamente prima della disruzione, ma la modifica non si riflette nella predizione di RAPTOR. Perciò il periodo dei denti di sega è stato usato come variabile di retroazione: una grande discrepanza tra RAPTOR e il periodo sperimentale dei denti di sega attiva l’allarme di disruzione. Gli esperimenti hanno mostrato che RAPTOR nel suo attuale stato di sviluppo è un valido strumento per la predizione delle disruzioni in plasma ohmici in modo L senza significative variazioni di forma: in RFX-mod, l’allarme di disruzione fu attivato parecchie decine di millisecondi prima della disruzione stessa e in TCV centinaia di millisecondi prima. Il maggiore vantaggio di questo metodo consiste nel suo essere basato sulla fisica del fenomeno, quindi non richiede enormi quantità di dati di scariche per addestrare reti neurali come gli attuali algoritmi. Esso è anche trasferibile da un dispositivo ad un altro, a differenza degli attuali strumenti di predizione delle disruzioni. Tuttavia i futuri strumenti di prevenzione delle disruzioni dovranno essere in grado di trattare plasmi molto più complessi di quelli studiati in questi casi di scariche in modo L ohmiche. L’ultima sezione di questa tesi dà esempi di predizione di disruzione in ASDEX-Upgrade e identifica le lacune che debbono essere colmate prima che RAPTOR diventi un strumento di predizione delle disruzioni pienamente maturo. Prima di tutto, sarà necessario includere tutte le sorgenti di riscaldamento e sostenimento della corrente (“current drive”). Un secondo importante aspetto è l’inclusione della pressione degli ioni veloci, che contribuisce in modo significativo alla totale energia di plasma e influenza la dinamica dei modi MHD, per esempi stabilizzando i denti di sega. Un altro importante pezzo del puzzle è l’accoppiamento di un solutore dell’equazione di Grad-Shafranov in tempo reale con RAPTOR, che può migliorare la qualità della ricostruzione dell’equilibrio, collegata da vicino, per esempio, al controllo delle instabilità NTM. Ultimo, ma non meno importante, un enorme beneficio potrebbe essere ottenuto da una migliore stima in tempo reale del profilo di temperatura elettronica fornita dalla relativa diagnostica.File | Dimensione | Formato | |
---|---|---|---|
ondrej_kudlacek_tesi.pdf
accesso aperto
Dimensione
6.04 MB
Formato
Adobe PDF
|
6.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/109160
URN:NBN:IT:UNIPD-109160