Le osservazioni cosmologiche suggeriscono che l'universo è omogeneo e isotropo su grandi scale e che le fluttuazioni di temperatura sono Gaussiane. Questo è stato confermato da Planck che ha misurato un livello di non-Gaussianità compatibile con zero con un livello di significatività del 68% per l'ampiezza del bispettro primordiale nelle configurazioni locale, equilatera e ortogonale. Tutte queste evidenze osservative sembrano essere in accordo con un'epoca inflazionaria guidata da un campo scalare dove questo campo, l'inflatone, guida una fase di espansione esponenziale quasi de Sitter. Tuttavia Planck misura uno spettro di potenza quasi invariante di scala. Questa quasi invarianza suggerisce che la simmetria per traslazioni temporali sia leggermente rotta durante l'inflazione. Quindi viene naturale chiedersi se altre simmetrie siano rotte e quali siano le conseguenze osservative. Inoltre, l'evidenza di alcune anomalie, precedentemente osservate nei dati di WMAP, e ora confermate (con un simile livello di significatività) da Planck, suggerisce una possibile violazione di alcune simmetrie ad un certo punto durante l'evoluzione dell'universo, possibilmente a tempi molto primordiali. Diverse anomalie sono state osservate: un allineamento tra il quadrupolo e l'ottupolo, un'asimetria dipolare in potenza e un'asimmetria emisferica in potenza tra l'emisfero galattico nord e l'emisfero galattico sud. Queste peculiarità suggeriscono una possibile violazione dell'isotropia statistica e/o dell'invarianza per parità. L'invarianza per rotazioni spaziali e trasformazioni di parità rimane conservata nei tipici modelli inflazionari basati su campi scalari, quindi è necessario modificare il contenuto della materia dell'universo primordiale introducendo nuovi campi o assumendo nuove configurazioni per il campo di background che differiscano dal background dipendente dal tempo che si ha nel caso dei tipici modelli scalari. Motivati da queste osservazioni, modelli teorici che possono sostenere una fase di espansione anisotropa possono avere un ruolo attivo e generare anisotropia statistica nelle fluttuazioni primordiali. Questo può essere realizzato introducendo campi di gauge accoppiati con campi scalari e/o pseudoscalari o considerando tre campi scalari in un background anisotropo con una configurazione non-standard per le simmetrie spazio-temporali di background, che non sfrutta la rottura per traslazioni temporali. La rottura di simmetria per rotazione implica che le funzioni di correlazione esibiscono una dipendenza dalla direzione e, in particolare, la funzione di correlazione a due punti nello spazio di Fourier (spettro di potenza) delle perturbazioni primordiali di curvatura definita da $\langle\zeta_{k_{1}} \zeta_{k_{2}}\rangle=\left(2\pi\right)^3 \delta^{(3)}\left(\textbf{k}_{1}+\textbf{k}_{2}\right)P_{\zeta}\left(\textbf{k}_{1}\right)$ si modifichi in Pζ(k) =Piso (k) [1+ g* (k)( k°n)] dove Piso (k) rappresenta lo spettro di potenza isotropo, n è una direzione spaziale privilegiata e g* un parametro che caratterizza l'ampiezza della violazione di simmetria per rotazione. Nel contesto di modelli primordiali anisotropi abbiamo sviluppato questo lavoro di tesi di dottorato e in particolare abbiamo analizzato un modello in cui un opportuno accoppiamento tra l'inflatone ᶲ e il termine cinetico vettoriale F2 genera uno spettro di potenza anisotropo e un bispettro con una dipendenza angolare non banale nella configurazione "squeezed''. In particolare abbiamo trovato che un'ampiezza dell'anisotropia g* dell'ordine del 1% (10%) è possibile se l'inflazione dura ~ 5 (~ 50) e-folds in più dei soliti 60 richiesti per generare i modi della radiazione di fondo cosmico di microonde. Uno dei risultati più importanti trovati in questa analisi riguarda la presenza di modi infrarossi delle perturbazioni del campo di gauge. Tali modi infrarossi determinano un campo vettoriale classico che in genere tende ad innalzare il livello di anisotropia statistica a livelli molto vicini ai limiti osservativi. Predizioni caratterizzanti per questo modello è il mixing tra i modi TB e EB, tra polarizzazione e temperatura, causati dall'anisotropia, e una correlazione tra l'anisotropia nello spettro di potenza g* e l'ampiezza del bispettro fNL che può essere considerata una relazione di consistenza per tutti i tipi di modelli che rompono l'invarianza per rotazione. Sempre nell'ottica della violazione di isotropia, ma con un approccio completamente differente che coinvolge campi scalari, abbiamo poi mostrato, per la prima volta, come con gravità standard e campi scalari, è possibile violare le condizioni del teorema di Wald. In questo modello, chiamato modello solido/elastico, l'inflazione è guidata da un solido. Un prolungato periodo di accelerazione con lento rotolamento è garantito dall'estrema insensibilità del solido all'espansione spaziale. Noi abbiamo dimostrato che, a causa di questa proprietà, il solido è anche piuttosto inefficiente nel diluire deformazioni anisotrope della geometria. Questo permette una soluzione inflazionaria anisotropa prolungata e la generazione di un contributo anisotropo non trascurabile g* allo spettro di potenza. Infine abbiamo investigato i segnali di violazione di parità nel bispettro del fondo cosmico di microonde per temperatura e polarizzazione in un modello dove un campo pseudoscalare che rotola lentamente, accoppiato ad un campo vettoriale, produce elevata non-Gaussianità nella configurazione equilatera. Abbiamo mostrato che la possibilità di usare la polarizzazione con segnale non nullo sia nello spazio delle configurazioni delle l-pari che dispari accresce di diversi ordini di grandezza la rilevabilità di tali bispettri rispetto ad un'analisi con solo temperatura. Considerando i progressivi miglioramenti in accuratezza delle prossime missioni spaziali è utile introdurre e analizzare mezzi particolari, come l'anisotropia statistica, la violazione di parità e nuove configurazioni per la non-Gaussianità, che possano essere utili per discriminare tra la pletora di modelli inflazionari primordiali.
Statistical Anisotropy and non-Gaussianity from the Early Universe
RICCIARDONE, ANGELO
2014
Abstract
Le osservazioni cosmologiche suggeriscono che l'universo è omogeneo e isotropo su grandi scale e che le fluttuazioni di temperatura sono Gaussiane. Questo è stato confermato da Planck che ha misurato un livello di non-Gaussianità compatibile con zero con un livello di significatività del 68% per l'ampiezza del bispettro primordiale nelle configurazioni locale, equilatera e ortogonale. Tutte queste evidenze osservative sembrano essere in accordo con un'epoca inflazionaria guidata da un campo scalare dove questo campo, l'inflatone, guida una fase di espansione esponenziale quasi de Sitter. Tuttavia Planck misura uno spettro di potenza quasi invariante di scala. Questa quasi invarianza suggerisce che la simmetria per traslazioni temporali sia leggermente rotta durante l'inflazione. Quindi viene naturale chiedersi se altre simmetrie siano rotte e quali siano le conseguenze osservative. Inoltre, l'evidenza di alcune anomalie, precedentemente osservate nei dati di WMAP, e ora confermate (con un simile livello di significatività) da Planck, suggerisce una possibile violazione di alcune simmetrie ad un certo punto durante l'evoluzione dell'universo, possibilmente a tempi molto primordiali. Diverse anomalie sono state osservate: un allineamento tra il quadrupolo e l'ottupolo, un'asimetria dipolare in potenza e un'asimmetria emisferica in potenza tra l'emisfero galattico nord e l'emisfero galattico sud. Queste peculiarità suggeriscono una possibile violazione dell'isotropia statistica e/o dell'invarianza per parità. L'invarianza per rotazioni spaziali e trasformazioni di parità rimane conservata nei tipici modelli inflazionari basati su campi scalari, quindi è necessario modificare il contenuto della materia dell'universo primordiale introducendo nuovi campi o assumendo nuove configurazioni per il campo di background che differiscano dal background dipendente dal tempo che si ha nel caso dei tipici modelli scalari. Motivati da queste osservazioni, modelli teorici che possono sostenere una fase di espansione anisotropa possono avere un ruolo attivo e generare anisotropia statistica nelle fluttuazioni primordiali. Questo può essere realizzato introducendo campi di gauge accoppiati con campi scalari e/o pseudoscalari o considerando tre campi scalari in un background anisotropo con una configurazione non-standard per le simmetrie spazio-temporali di background, che non sfrutta la rottura per traslazioni temporali. La rottura di simmetria per rotazione implica che le funzioni di correlazione esibiscono una dipendenza dalla direzione e, in particolare, la funzione di correlazione a due punti nello spazio di Fourier (spettro di potenza) delle perturbazioni primordiali di curvatura definita da $\langle\zeta_{k_{1}} \zeta_{k_{2}}\rangle=\left(2\pi\right)^3 \delta^{(3)}\left(\textbf{k}_{1}+\textbf{k}_{2}\right)P_{\zeta}\left(\textbf{k}_{1}\right)$ si modifichi in Pζ(k) =Piso (k) [1+ g* (k)( k°n)] dove Piso (k) rappresenta lo spettro di potenza isotropo, n è una direzione spaziale privilegiata e g* un parametro che caratterizza l'ampiezza della violazione di simmetria per rotazione. Nel contesto di modelli primordiali anisotropi abbiamo sviluppato questo lavoro di tesi di dottorato e in particolare abbiamo analizzato un modello in cui un opportuno accoppiamento tra l'inflatone ᶲ e il termine cinetico vettoriale F2 genera uno spettro di potenza anisotropo e un bispettro con una dipendenza angolare non banale nella configurazione "squeezed''. In particolare abbiamo trovato che un'ampiezza dell'anisotropia g* dell'ordine del 1% (10%) è possibile se l'inflazione dura ~ 5 (~ 50) e-folds in più dei soliti 60 richiesti per generare i modi della radiazione di fondo cosmico di microonde. Uno dei risultati più importanti trovati in questa analisi riguarda la presenza di modi infrarossi delle perturbazioni del campo di gauge. Tali modi infrarossi determinano un campo vettoriale classico che in genere tende ad innalzare il livello di anisotropia statistica a livelli molto vicini ai limiti osservativi. Predizioni caratterizzanti per questo modello è il mixing tra i modi TB e EB, tra polarizzazione e temperatura, causati dall'anisotropia, e una correlazione tra l'anisotropia nello spettro di potenza g* e l'ampiezza del bispettro fNL che può essere considerata una relazione di consistenza per tutti i tipi di modelli che rompono l'invarianza per rotazione. Sempre nell'ottica della violazione di isotropia, ma con un approccio completamente differente che coinvolge campi scalari, abbiamo poi mostrato, per la prima volta, come con gravità standard e campi scalari, è possibile violare le condizioni del teorema di Wald. In questo modello, chiamato modello solido/elastico, l'inflazione è guidata da un solido. Un prolungato periodo di accelerazione con lento rotolamento è garantito dall'estrema insensibilità del solido all'espansione spaziale. Noi abbiamo dimostrato che, a causa di questa proprietà, il solido è anche piuttosto inefficiente nel diluire deformazioni anisotrope della geometria. Questo permette una soluzione inflazionaria anisotropa prolungata e la generazione di un contributo anisotropo non trascurabile g* allo spettro di potenza. Infine abbiamo investigato i segnali di violazione di parità nel bispettro del fondo cosmico di microonde per temperatura e polarizzazione in un modello dove un campo pseudoscalare che rotola lentamente, accoppiato ad un campo vettoriale, produce elevata non-Gaussianità nella configurazione equilatera. Abbiamo mostrato che la possibilità di usare la polarizzazione con segnale non nullo sia nello spazio delle configurazioni delle l-pari che dispari accresce di diversi ordini di grandezza la rilevabilità di tali bispettri rispetto ad un'analisi con solo temperatura. Considerando i progressivi miglioramenti in accuratezza delle prossime missioni spaziali è utile introdurre e analizzare mezzi particolari, come l'anisotropia statistica, la violazione di parità e nuove configurazioni per la non-Gaussianità, che possano essere utili per discriminare tra la pletora di modelli inflazionari primordiali.File | Dimensione | Formato | |
---|---|---|---|
Angelo_Ricciardone_Tesi.pdf
accesso aperto
Dimensione
1.92 MB
Formato
Adobe PDF
|
1.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/109234
URN:NBN:IT:UNIPD-109234