Nell’ambito della robotica, il Simultaneous Localization and Mapping (SLAM) é il processo grazie al quale un robot autonomo é in grado di creare una mappa dell’ambiente circostante e allo stesso tempo di localizzarsi avvalendosi di tale mappa. Negli ultimi anni un considerevole numero di ricercatori ha sviluppato nuove famiglie di algoritmi di SLAM, basati su vari sensori e utilizzando varie piattaforme robotiche. Uno degli ambiti più complessi nella ricerca sullo SLAM é il cosiddetto Visual-SLAM, che prevede l’utilizzo di vari tipi di telecamera come sensore per la navigazione. Le telecamere sono sensori economici che raccolgono molte informazioni sull’ambiente circostante. D’altro canto, la complessità degli algoritmi di visione artificiale e la forte dipendenza degli approcci attualmente realizzati dalle caratteristiche dell’ambiente, rendono il Visual-SLAM un problema lontano dal poter essere considerato risolto. Molti degli algoritmi di SLAM sono solitamente testati usando robot dotati di ruote. Sebbene tali piattaforme siano ormai robuste e stabili, la ricerca sulla progettazione di nuove piattaforme robotiche sta in parte migrando verso la robotica umanoide. Proprio come gli esseri umani, i robot umanoidi sono in grado di adattarsi ai cambiamenti dell’ambiente per raggiungere efficacemente i propri obiettivi. Nonostante ciò, solo pochi ricercatori hanno focalizzato i loro sforzi su implementazioni stabili di algoritmi di SLAM e Visual-SLAM adatti ai robot umanoidi. Tali piattaforme robotiche introducono nuove problematiche che possono compromettere la stabilità degli algoritmi di navigazione convenzionali, specie se basati sulla visione. I robot umanoidi sono dotati di un alto grado di libertà di movimento, con la possibilità di effettuare velocemente movimenti complessi: tali caratteristiche introducono negli spostamenti vibrazioni non deterministiche in grado di compromettere l’affidabilit` dei dati sensoriali acquisiti, per esempio introducendo nei flussi video effetti indesiderati quali il motion blur. A causa dei vincoli imposti dal bilanciamento del corpo, inoltre, tali robot non sempre possono essere dotati di unit` di elaborazione molto performanti che spesso sono ingombranti e dal peso elevato: ci` limita l’utilizzo di algoritmi complessi e computazionalmente gravosi. Infine, al contrario di quanto accade per i robot dotati di ruote, la complessa cinematica di un robot umanoide impedisce di ricostruire il movimento basandosi sulle informazioni provenienti dagli encoder posti sui motori. In questa tesi ci si é focalizzati sullo studio e sullo sviluppo di nuove metodologie per affrontare il problema del Visual-SLAM, ponendo particolare enfasi ai problemi legati all’utilizzo di piccoli robot umanoidi dotati di una singola telecamera come piattaforme per gli esperimenti. I maggiori sforzi nell’ambito della ricerca sullo SLAM e sul Visual-SLAM si sono concentrati nel campo del processo di stima dello stato del robot, ad esempio la stima della propria posizione e della mappa dell’ambiente. D’altra parte, la maggior parte delle problematiche incontrate nella ricerca sul Visual-SLAM sono legate al processo di percezione, ovvero all’interpretazione dei dati provenienti dai sensori. In questa tesi ci si é perciò concentrati sul miglioramento dei processi percettivi da un punto di vista della visione artificiale. Sono stati affrontati i problemi che scaturiscono dall’utilizzo di piccoli robot umanoidi come piattaforme sperimentali, come ad esempio la bassa capacità di calcolo, la bassa qualit` dei dati sensoriali e l’elevato numero di gradi di libertà nei movimenti. La bassa capacità di calcolo ha portato alla creazione di un nuovo metodo per misurare la similarità tra le immagini, che fa uso di una descrizione dell’immagine compatta, utilizzabile in applicazioni di SLAM topologico. Il problema del motion blur é stato affrontato proponendo una nuova tecnica di rilevamento di feature visive, unitamente ad un nuovo schema di tracking, robusto an- che in caso di motion blur non uniforme. E’ stato altresì sviluppato un framework per l’odometria basata sulle immagini, che fa uso delle feature visive presentate. Si propone infine un approccio al Visual-SLAM basato sulle omografie, che sfrutta le informazioni ottenute da una singola telecamera montata su un robot umanoide. Tale approccio si basa sull’assunzione che il robot si muove su una superficie piana. Tutti i metodi proposti sono stati validati con esperimenti e studi comparativi, usando sia dataset standard che immagini acquisite dalle telecamere installate su piccoli robot umanoidi.
Visual-SLAM for Humanoid Robots
PRETTO, ALBERTO
2009
Abstract
Nell’ambito della robotica, il Simultaneous Localization and Mapping (SLAM) é il processo grazie al quale un robot autonomo é in grado di creare una mappa dell’ambiente circostante e allo stesso tempo di localizzarsi avvalendosi di tale mappa. Negli ultimi anni un considerevole numero di ricercatori ha sviluppato nuove famiglie di algoritmi di SLAM, basati su vari sensori e utilizzando varie piattaforme robotiche. Uno degli ambiti più complessi nella ricerca sullo SLAM é il cosiddetto Visual-SLAM, che prevede l’utilizzo di vari tipi di telecamera come sensore per la navigazione. Le telecamere sono sensori economici che raccolgono molte informazioni sull’ambiente circostante. D’altro canto, la complessità degli algoritmi di visione artificiale e la forte dipendenza degli approcci attualmente realizzati dalle caratteristiche dell’ambiente, rendono il Visual-SLAM un problema lontano dal poter essere considerato risolto. Molti degli algoritmi di SLAM sono solitamente testati usando robot dotati di ruote. Sebbene tali piattaforme siano ormai robuste e stabili, la ricerca sulla progettazione di nuove piattaforme robotiche sta in parte migrando verso la robotica umanoide. Proprio come gli esseri umani, i robot umanoidi sono in grado di adattarsi ai cambiamenti dell’ambiente per raggiungere efficacemente i propri obiettivi. Nonostante ciò, solo pochi ricercatori hanno focalizzato i loro sforzi su implementazioni stabili di algoritmi di SLAM e Visual-SLAM adatti ai robot umanoidi. Tali piattaforme robotiche introducono nuove problematiche che possono compromettere la stabilità degli algoritmi di navigazione convenzionali, specie se basati sulla visione. I robot umanoidi sono dotati di un alto grado di libertà di movimento, con la possibilità di effettuare velocemente movimenti complessi: tali caratteristiche introducono negli spostamenti vibrazioni non deterministiche in grado di compromettere l’affidabilit` dei dati sensoriali acquisiti, per esempio introducendo nei flussi video effetti indesiderati quali il motion blur. A causa dei vincoli imposti dal bilanciamento del corpo, inoltre, tali robot non sempre possono essere dotati di unit` di elaborazione molto performanti che spesso sono ingombranti e dal peso elevato: ci` limita l’utilizzo di algoritmi complessi e computazionalmente gravosi. Infine, al contrario di quanto accade per i robot dotati di ruote, la complessa cinematica di un robot umanoide impedisce di ricostruire il movimento basandosi sulle informazioni provenienti dagli encoder posti sui motori. In questa tesi ci si é focalizzati sullo studio e sullo sviluppo di nuove metodologie per affrontare il problema del Visual-SLAM, ponendo particolare enfasi ai problemi legati all’utilizzo di piccoli robot umanoidi dotati di una singola telecamera come piattaforme per gli esperimenti. I maggiori sforzi nell’ambito della ricerca sullo SLAM e sul Visual-SLAM si sono concentrati nel campo del processo di stima dello stato del robot, ad esempio la stima della propria posizione e della mappa dell’ambiente. D’altra parte, la maggior parte delle problematiche incontrate nella ricerca sul Visual-SLAM sono legate al processo di percezione, ovvero all’interpretazione dei dati provenienti dai sensori. In questa tesi ci si é perciò concentrati sul miglioramento dei processi percettivi da un punto di vista della visione artificiale. Sono stati affrontati i problemi che scaturiscono dall’utilizzo di piccoli robot umanoidi come piattaforme sperimentali, come ad esempio la bassa capacità di calcolo, la bassa qualit` dei dati sensoriali e l’elevato numero di gradi di libertà nei movimenti. La bassa capacità di calcolo ha portato alla creazione di un nuovo metodo per misurare la similarità tra le immagini, che fa uso di una descrizione dell’immagine compatta, utilizzabile in applicazioni di SLAM topologico. Il problema del motion blur é stato affrontato proponendo una nuova tecnica di rilevamento di feature visive, unitamente ad un nuovo schema di tracking, robusto an- che in caso di motion blur non uniforme. E’ stato altresì sviluppato un framework per l’odometria basata sulle immagini, che fa uso delle feature visive presentate. Si propone infine un approccio al Visual-SLAM basato sulle omografie, che sfrutta le informazioni ottenute da una singola telecamera montata su un robot umanoide. Tale approccio si basa sull’assunzione che il robot si muove su una superficie piana. Tutti i metodi proposti sono stati validati con esperimenti e studi comparativi, usando sia dataset standard che immagini acquisite dalle telecamere installate su piccoli robot umanoidi.File | Dimensione | Formato | |
---|---|---|---|
phd_thesis.pdf
accesso aperto
Dimensione
10.92 MB
Formato
Adobe PDF
|
10.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/109799
URN:NBN:IT:UNIPD-109799