Questa ricerca presenta una nuova struttura di Pianificazione Cognitiva delle Attività ideata per Robot Industriali Intelligenti. La struttura rende Cognitivo un manipolatore industriale mobile applicando le tecnologie offerte dal Web Semantico. Viene inoltre introdotto un nuovo algoritmo di Navigazione tra Oggetti Removibili per robot che navigano e manipolano all’interno di una fabbrica. L’obiettivo di Industria 4.0 è quello di creare Fabbriche Intelligenti: fabbriche modulari dotate di sistemi cyber-fisici in grado di customizzare i prodotti pur mantenendo una produzione di massa altamente flessibile. Tali sistemi devono essere in grado di comunicare e cooperare tra loro e con gli agenti umani in tempo reale, attraverso l’Internet delle Cose. Devono sapersi autonomamente ed intelligentemente adattare ai costanti cambiamenti dell’ambiente che li circonda. Devono saper navigare autonomamente all’interno della fabbrica, anche spostando ostacoli che occludono percorsi liberi, ed essere in grado di manipolare questi oggetti anche se visti per la prima volta. Devono essere in grado di imparare dalle loro azioni e da quelle eseguite da altri agenti. La maggior parte dei robot industriali mobili naviga secondo traiettorie generate a priori. Seguono filielettrificatiincorporatinelterrenoolineedipintesulpavimento. Pianificareapriorièfunzionale se l’ambiente è immutevole e i cicli produttivi sono caratterizzati da criticità temporali. E’ preferibile adottare una pianificazione dinamica se, invece, l’area di lavoro ed i compiti assegnati cambiano frequentemente: i robot devono saper navigare autonomamente senza tener conto dei cambiamenti circostanti. Si consideri il comportamento umano: l’uomo ragiona sulla possibilità di spostare ostacolise unaposizione obiettivo nonè raggiungibileose talespostamento puòaccorciare la traiettoria da percorrere. Questo problema viene detto Navigazione tra Oggetti Removibili ed è noto alla robotica di soccorso. Questo lavoro traspone il problema in uno scenario industriale e prova ad affrontare i suoi due obiettivi principali: l’elevata dimensione dello spazio di ricerca ed il trattamento dell’incertezza. L’algoritmo proposto vuole dare priorità di esplorazione alle aree meno esplorate, per questo estende l’algoritmo noto come Kinodynamic Motion Planning by Interior-Exterior Cell Exploration. L’estensione non impone l’elusione degli ostacoli. Assegna ad ogni cella un’importanza che combina lo sforzo necessario per raggiungerla con quello necessario per liberarla da eventuali ostacoli. L’algoritmo risultante è scalabile grazie alla sua indipendenza dalla dimensione della mappa e dal numero, forma e posizione degli ostacoli. Non impone restrizioni sulle azioni da eseguire: ogni oggetto può venir spinto o afferrato. Allo stato attuale, l’algoritmo assume una completa conoscenza del mondo circonstante. L’ambiente è però riconfigurabile di modo che l’algoritmo possa venir facilmente esteso alla risoluzione di problemi di Navigazione tra Oggetti Removibili in ambienti ignoti. L’algoritmo gestisce i feedback dati dai sensori per correggere le incertezze. Solitamente la Robotica separa la risoluzione dei problemi di pianificazione del movimento da quelli di manipolazione. La Navigazione tra Ostacoli Removibili forza il loro trattamento combinato introducendo la necessità di manipolare oggetti diversi, spesso ignoti, durante la navigazione. Adottare prese pre calcolate non fa fronte alla grande quantità e diversità di oggetti esistenti. Questa tesi propone un Framework di Conoscenza Semantica a supporto dell’algoritmo sopra esposto. Essodàairobotlacapacitàdiimparareamanipolareoggettiedisseminareleinformazioni acquisite durante il compimento dei compiti assegnati. Il Framework si compone di un’Ontologia e di un Engine. L’Ontologia estende lo Standard IEEE formulato per Ontologie per la Robotica e l’Automazione andando a definire le manipolazioni apprese e gli oggetti rilevati. È accessibile a qualsiasi robot connesso al Cloud. Può venir considerato I) una raccolta di dati per l’esecuzione efficiente ed affidabile di azioni ripetute; II) un archivio Web per lo scambio di informazioni tra robot e la velocizzazione della fase di apprendimento. Ad ora, non esistono altre ontologie sulla manipolazione che rispettino lo Standard IEEE. Indipendentemente dallo standard, l’Ontologia propostadifferiscedaquelleesistentiperiltipodiinformazionisalvateeperilmodoefficienteincui un agente può accedere a queste informazioni: attraverso un algoritmo di Cascade Hashing molto veloce. L’Engine consente il calcolo e il salvataggio delle manipolazioni non ancora in Ontologia. Si basa su tecniche di Reinforcement Learning che evitano il training massivo su basi di dati a larga scala, favorendo l’interazione uomo-robot. Infatti, viene data ai robot la possibilità di imparare dagli umani attraverso un framework di Apprendimento Robotico da Dimostrazioni. Il sistema finale è flessibile ed adattabile a robot diversi operanti in diversi ambienti industriali. È caratterizzato da una struttura modulare in cui ogni blocco è completamente riutilizzabile. Ogni blocco si basa sul sistema open-source denominato Robot Operating System. Non tutti i controllori industriali sono disegnati per essere compatibili con questa piattaforma. Viene quindi presentato il metodo che è stato adottato per aprire i controllori dei robot industriali e crearne un’interfaccia ROS.
Cognitive Task Planning for Smart Industrial Robots
TOSELLO, ELISA
2016
Abstract
Questa ricerca presenta una nuova struttura di Pianificazione Cognitiva delle Attività ideata per Robot Industriali Intelligenti. La struttura rende Cognitivo un manipolatore industriale mobile applicando le tecnologie offerte dal Web Semantico. Viene inoltre introdotto un nuovo algoritmo di Navigazione tra Oggetti Removibili per robot che navigano e manipolano all’interno di una fabbrica. L’obiettivo di Industria 4.0 è quello di creare Fabbriche Intelligenti: fabbriche modulari dotate di sistemi cyber-fisici in grado di customizzare i prodotti pur mantenendo una produzione di massa altamente flessibile. Tali sistemi devono essere in grado di comunicare e cooperare tra loro e con gli agenti umani in tempo reale, attraverso l’Internet delle Cose. Devono sapersi autonomamente ed intelligentemente adattare ai costanti cambiamenti dell’ambiente che li circonda. Devono saper navigare autonomamente all’interno della fabbrica, anche spostando ostacoli che occludono percorsi liberi, ed essere in grado di manipolare questi oggetti anche se visti per la prima volta. Devono essere in grado di imparare dalle loro azioni e da quelle eseguite da altri agenti. La maggior parte dei robot industriali mobili naviga secondo traiettorie generate a priori. Seguono filielettrificatiincorporatinelterrenoolineedipintesulpavimento. Pianificareapriorièfunzionale se l’ambiente è immutevole e i cicli produttivi sono caratterizzati da criticità temporali. E’ preferibile adottare una pianificazione dinamica se, invece, l’area di lavoro ed i compiti assegnati cambiano frequentemente: i robot devono saper navigare autonomamente senza tener conto dei cambiamenti circostanti. Si consideri il comportamento umano: l’uomo ragiona sulla possibilità di spostare ostacolise unaposizione obiettivo nonè raggiungibileose talespostamento puòaccorciare la traiettoria da percorrere. Questo problema viene detto Navigazione tra Oggetti Removibili ed è noto alla robotica di soccorso. Questo lavoro traspone il problema in uno scenario industriale e prova ad affrontare i suoi due obiettivi principali: l’elevata dimensione dello spazio di ricerca ed il trattamento dell’incertezza. L’algoritmo proposto vuole dare priorità di esplorazione alle aree meno esplorate, per questo estende l’algoritmo noto come Kinodynamic Motion Planning by Interior-Exterior Cell Exploration. L’estensione non impone l’elusione degli ostacoli. Assegna ad ogni cella un’importanza che combina lo sforzo necessario per raggiungerla con quello necessario per liberarla da eventuali ostacoli. L’algoritmo risultante è scalabile grazie alla sua indipendenza dalla dimensione della mappa e dal numero, forma e posizione degli ostacoli. Non impone restrizioni sulle azioni da eseguire: ogni oggetto può venir spinto o afferrato. Allo stato attuale, l’algoritmo assume una completa conoscenza del mondo circonstante. L’ambiente è però riconfigurabile di modo che l’algoritmo possa venir facilmente esteso alla risoluzione di problemi di Navigazione tra Oggetti Removibili in ambienti ignoti. L’algoritmo gestisce i feedback dati dai sensori per correggere le incertezze. Solitamente la Robotica separa la risoluzione dei problemi di pianificazione del movimento da quelli di manipolazione. La Navigazione tra Ostacoli Removibili forza il loro trattamento combinato introducendo la necessità di manipolare oggetti diversi, spesso ignoti, durante la navigazione. Adottare prese pre calcolate non fa fronte alla grande quantità e diversità di oggetti esistenti. Questa tesi propone un Framework di Conoscenza Semantica a supporto dell’algoritmo sopra esposto. Essodàairobotlacapacitàdiimparareamanipolareoggettiedisseminareleinformazioni acquisite durante il compimento dei compiti assegnati. Il Framework si compone di un’Ontologia e di un Engine. L’Ontologia estende lo Standard IEEE formulato per Ontologie per la Robotica e l’Automazione andando a definire le manipolazioni apprese e gli oggetti rilevati. È accessibile a qualsiasi robot connesso al Cloud. Può venir considerato I) una raccolta di dati per l’esecuzione efficiente ed affidabile di azioni ripetute; II) un archivio Web per lo scambio di informazioni tra robot e la velocizzazione della fase di apprendimento. Ad ora, non esistono altre ontologie sulla manipolazione che rispettino lo Standard IEEE. Indipendentemente dallo standard, l’Ontologia propostadifferiscedaquelleesistentiperiltipodiinformazionisalvateeperilmodoefficienteincui un agente può accedere a queste informazioni: attraverso un algoritmo di Cascade Hashing molto veloce. L’Engine consente il calcolo e il salvataggio delle manipolazioni non ancora in Ontologia. Si basa su tecniche di Reinforcement Learning che evitano il training massivo su basi di dati a larga scala, favorendo l’interazione uomo-robot. Infatti, viene data ai robot la possibilità di imparare dagli umani attraverso un framework di Apprendimento Robotico da Dimostrazioni. Il sistema finale è flessibile ed adattabile a robot diversi operanti in diversi ambienti industriali. È caratterizzato da una struttura modulare in cui ogni blocco è completamente riutilizzabile. Ogni blocco si basa sul sistema open-source denominato Robot Operating System. Non tutti i controllori industriali sono disegnati per essere compatibili con questa piattaforma. Viene quindi presentato il metodo che è stato adottato per aprire i controllori dei robot industriali e crearne un’interfaccia ROS.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
accesso aperto
Dimensione
16.74 MB
Formato
Adobe PDF
|
16.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/109969
URN:NBN:IT:UNIPD-109969