Un propulsore al plasma di tipo Helicon è un sistema di propulsione spaziale composto da una sorgente Helicon e da un ugello magnetico appositamente progettato. Tale tipo di propulsore attrae molto interesse per via dell'intervallo atteso per l'impulso specifico ed il rapporto spinta-su-peso, nonché per la scalabilità del concetto e la semplicità costruttiva. Inoltre, un propulsore Helicon è privo di elettrodi e di parti in movimento, dunque ci si aspetta una lunga durata di funzionamento. Malgrado le sorgenti Helicon siamo stata impiegate per decenni per produrre plasmi ad elevata densità, il loro funzionamento non è ancora del tutto compreso. Infatti, sebbene la geometria sia semplice, una vasta gamma di fenomeni fisici convivono all'interno della sorgente: vanno presi in considerazione la fisica atomica, la cinetica dei fluidi, l'elettrostatica e l'elettromagnetismo, e tutti questi sono strettamente interdipendenti. La sorgente Helicon è dunque un sistema molto complesso da modellare e, a conoscenza dell'autore, non è ancora stato sviluppato un sistema di strumenti per la progettazione e l'ottimizzazione di tale tipo di sorgente. Il lavoro svolto all'interno di questa tesi si concentra sullo studio di una sorgente Helicon da applicarsi nella propulsione spaziale e, più precisamente, sullo studio della configurazione proposta del progetto HPH.com (Helicon Plasma Hydrazine. COmbined Micro), nel settimo Framework Programme dell'Unione Europea. La sorgente di plasma considerata è di piccole dimensioni (circa 15 cm in lunghezza), e ci si aspetta che il propulsore fornisca circa 2 mN di spinta a fronte di 50 W di potenza elettrica fornita. Con queste caratteristiche, il propulsore è pensato per l'utilizzo nel controllo d'assetto di micro-satelliti. Con il fine di ottimizzare le risorse computazionali a disposizione, un modello ibrido risulta preferibile rispetto ad un modello monolitico. Secondo il primo approccio, il sistema fisico è decomposto in sotto-sistemi, ed ognuno di essi è simulato da un sotto-modello dedicato, che (idealmente) dovrebbe utilizzare un livello di dettaglio appropriato. Non esiste alcuna teoria esaustiva su come sviluppare modelli ibridi, e parte di questa tesi è dedicata ad investigare la 'via migliore' di costruire un modello ibrido. Viene qui proposto un approccio originale, basato sulla costruzione di sotto-modelli che si affidano a diversi livelli di dettaglio, invece che semplicemente sul miglior modello possibile. Tale approccio è naturale, e ci si aspetta che sia flessibile, robusto e che fornisca una migliore comprensione del fenomeno fisico. Seguendo tale metodologia, è stata sviluppata una serie di modelli via via più complessi. Poiché una simulazione dettagliata ed autoconsistente dell'intera sorgente non può essere completata in una singola tesi di Dottorato, la maggior parte di questo lavoro si concentra sulla comprensione della dinamica accoppiata di elettroni e neutri, che in questo sistema non è mai stata approfonditamente investigata. Per valutare l'efficienza di ionizzazione all'interno della sorgente, modelli analitici 0D e 1D del processo di deplezione dei neutri sono presentati. Il confronto dei due modelli suggerisce i regimi in cui è necessario un livello di dettaglio più elevato, e mostra le condizioni in cui il modello 1D converge asintoticamente alla soluzione 0D. Successivamente, la dinamica dei neutri è accoppiata alla dinamica degli elettroni, per mezzo di un modello semi-analitico 0D che assume che gli elettroni abbiano una distribuzione Maxwelliana. La soluzione ottenuta fornisce valori preliminari per i parametri di plasma all’interno della sorgente, dai quali è possibile valutare un intervallo di lunghezze caratteristiche e di scale temporali che caratterizzano i diversi processi fisici. Questi risultati sono essenziali per la progettazione preliminare di un modello cinetico per gli elettroni mediato su un elevato numero di oscillazioni all'interno della sorgente ('bounce averaged'); tale modello rimane 0D nello spazio, ma esso calcola la distribuzione energetica degli elettroni in modo autoconsistente con i vari processi. Successivamente, un modello 0D-1V cinetico per gli elettroni è stato progettato nel dettaglio, includendo l’effetto del riscaldamento elettromagnetico e dei diversi processi collisionali. La convergenza a regime stazionario è stata accelerata attraverso la separazione delle diverse scale temporali, iterazioni di punto fisso, integrazione implicita con un solutore di Newton a passo temporale variabile, ed un modello ausiliario ridotto. La densità dei neutri nella sorgente è ottenuta dal modello analitico 1D sopra citato. Quando si è ritenuto necessario un modello dettagliato dei neutri, è stato sviluppato un modello cinetico 3D-3V, che impiega un solutore semi-Lagrangiano chiamato Convected Scheme. Questo modello risolve l'equazione di Boltzmann nello spazio nelle fasi a sei dimensioni, più il tempo. Trattandosi della prima implementazione del Convective Scheme in tre dimensioni spaziali, si sono incontrati diversi problemi di natura computazionale, per i quali è stato necessario trovare soluzioni innovative. Per questa ragione, una parte consistente di questo lavoro di tesi è stata dedicata ad implementare nuove condizioni al contorno diffusive, un nuovo modello di iniettore, una nuova mesh angolare ed un innovativo operatore collisionale per il modello di Bhatnagar-Gross-Krook che conservi esattamente massa, quantità di moto ed energia. Inoltre, è stato sviluppato un metodo innovativo di rimappatura, accurato al terzo ordine, che preserva la positività della soluzione e possiede bassa diffusione numerica.
Modular numerical environment for the characterization of a Helicon plasma thruster
GUCLU, YAMAN
2011
Abstract
Un propulsore al plasma di tipo Helicon è un sistema di propulsione spaziale composto da una sorgente Helicon e da un ugello magnetico appositamente progettato. Tale tipo di propulsore attrae molto interesse per via dell'intervallo atteso per l'impulso specifico ed il rapporto spinta-su-peso, nonché per la scalabilità del concetto e la semplicità costruttiva. Inoltre, un propulsore Helicon è privo di elettrodi e di parti in movimento, dunque ci si aspetta una lunga durata di funzionamento. Malgrado le sorgenti Helicon siamo stata impiegate per decenni per produrre plasmi ad elevata densità, il loro funzionamento non è ancora del tutto compreso. Infatti, sebbene la geometria sia semplice, una vasta gamma di fenomeni fisici convivono all'interno della sorgente: vanno presi in considerazione la fisica atomica, la cinetica dei fluidi, l'elettrostatica e l'elettromagnetismo, e tutti questi sono strettamente interdipendenti. La sorgente Helicon è dunque un sistema molto complesso da modellare e, a conoscenza dell'autore, non è ancora stato sviluppato un sistema di strumenti per la progettazione e l'ottimizzazione di tale tipo di sorgente. Il lavoro svolto all'interno di questa tesi si concentra sullo studio di una sorgente Helicon da applicarsi nella propulsione spaziale e, più precisamente, sullo studio della configurazione proposta del progetto HPH.com (Helicon Plasma Hydrazine. COmbined Micro), nel settimo Framework Programme dell'Unione Europea. La sorgente di plasma considerata è di piccole dimensioni (circa 15 cm in lunghezza), e ci si aspetta che il propulsore fornisca circa 2 mN di spinta a fronte di 50 W di potenza elettrica fornita. Con queste caratteristiche, il propulsore è pensato per l'utilizzo nel controllo d'assetto di micro-satelliti. Con il fine di ottimizzare le risorse computazionali a disposizione, un modello ibrido risulta preferibile rispetto ad un modello monolitico. Secondo il primo approccio, il sistema fisico è decomposto in sotto-sistemi, ed ognuno di essi è simulato da un sotto-modello dedicato, che (idealmente) dovrebbe utilizzare un livello di dettaglio appropriato. Non esiste alcuna teoria esaustiva su come sviluppare modelli ibridi, e parte di questa tesi è dedicata ad investigare la 'via migliore' di costruire un modello ibrido. Viene qui proposto un approccio originale, basato sulla costruzione di sotto-modelli che si affidano a diversi livelli di dettaglio, invece che semplicemente sul miglior modello possibile. Tale approccio è naturale, e ci si aspetta che sia flessibile, robusto e che fornisca una migliore comprensione del fenomeno fisico. Seguendo tale metodologia, è stata sviluppata una serie di modelli via via più complessi. Poiché una simulazione dettagliata ed autoconsistente dell'intera sorgente non può essere completata in una singola tesi di Dottorato, la maggior parte di questo lavoro si concentra sulla comprensione della dinamica accoppiata di elettroni e neutri, che in questo sistema non è mai stata approfonditamente investigata. Per valutare l'efficienza di ionizzazione all'interno della sorgente, modelli analitici 0D e 1D del processo di deplezione dei neutri sono presentati. Il confronto dei due modelli suggerisce i regimi in cui è necessario un livello di dettaglio più elevato, e mostra le condizioni in cui il modello 1D converge asintoticamente alla soluzione 0D. Successivamente, la dinamica dei neutri è accoppiata alla dinamica degli elettroni, per mezzo di un modello semi-analitico 0D che assume che gli elettroni abbiano una distribuzione Maxwelliana. La soluzione ottenuta fornisce valori preliminari per i parametri di plasma all’interno della sorgente, dai quali è possibile valutare un intervallo di lunghezze caratteristiche e di scale temporali che caratterizzano i diversi processi fisici. Questi risultati sono essenziali per la progettazione preliminare di un modello cinetico per gli elettroni mediato su un elevato numero di oscillazioni all'interno della sorgente ('bounce averaged'); tale modello rimane 0D nello spazio, ma esso calcola la distribuzione energetica degli elettroni in modo autoconsistente con i vari processi. Successivamente, un modello 0D-1V cinetico per gli elettroni è stato progettato nel dettaglio, includendo l’effetto del riscaldamento elettromagnetico e dei diversi processi collisionali. La convergenza a regime stazionario è stata accelerata attraverso la separazione delle diverse scale temporali, iterazioni di punto fisso, integrazione implicita con un solutore di Newton a passo temporale variabile, ed un modello ausiliario ridotto. La densità dei neutri nella sorgente è ottenuta dal modello analitico 1D sopra citato. Quando si è ritenuto necessario un modello dettagliato dei neutri, è stato sviluppato un modello cinetico 3D-3V, che impiega un solutore semi-Lagrangiano chiamato Convected Scheme. Questo modello risolve l'equazione di Boltzmann nello spazio nelle fasi a sei dimensioni, più il tempo. Trattandosi della prima implementazione del Convective Scheme in tre dimensioni spaziali, si sono incontrati diversi problemi di natura computazionale, per i quali è stato necessario trovare soluzioni innovative. Per questa ragione, una parte consistente di questo lavoro di tesi è stata dedicata ad implementare nuove condizioni al contorno diffusive, un nuovo modello di iniettore, una nuova mesh angolare ed un innovativo operatore collisionale per il modello di Bhatnagar-Gross-Krook che conservi esattamente massa, quantità di moto ed energia. Inoltre, è stato sviluppato un metodo innovativo di rimappatura, accurato al terzo ordine, che preserva la positività della soluzione e possiede bassa diffusione numerica.File | Dimensione | Formato | |
---|---|---|---|
PhD_Guclu_2011.pdf
accesso aperto
Dimensione
11.12 MB
Formato
Adobe PDF
|
11.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/110183
URN:NBN:IT:UNIPD-110183