Questa Tesi è dedicata all'analisi di problemi di perturbazione singolare e omogeneizzazione nello spazio Euclideo periodicamente perforato. Studiamo il comportamento delle soluzioni di problemi al contorno per le equazioni di Laplace, di Poisson e di Helmholtz al tendere a 0 di parametri legati al diametro dei buchi o alla dimensione delle celle di periodicità. La Tesi è organizzata come segue. Nel Capitolo 1, presentiamo due costruzioni note di un analogo periodico della soluzione fondamentale dell'equazione di Laplace, e introduciamo potenziali di strato e di volume periodici per l'equazione di Laplace e alcuni risultati basilari di teoria del potenziale periodica. Il Capitolo 2 è dedicato a problemi di perturbazione singolare e omogeneizzazione per le equazioni di Laplace e Poisson con condizioni al bordo di Dirichlet e Neumann. Nel Capitolo 3 consideriamo il caso di problemi al contorno di Robin (lineari e nonlineari) per l'equazione di Laplace, mentre nel Capitolo 4 analizziamo problemi di trasmissione (lineari e nonlineari). Nel Capitolo 5 applichiamo i risultati del Capitolo 4 al fine di provare l'analiticità della conduttività effettiva di un composto periodico. Il Capitolo 6 è dedicato alla costruzione di un analogo periodico della soluzione fondamentale dell'equazione di Helmholtz e dei corrispondenti potenziali di strato. Nel Capitolo 7 raccogliamo alcuni risultati di teoria spettrale per l'operatore di Laplace in domini periodicamente perforati. Nel Capitolo 8 studiamo problemi di perturbazione singolare e di omogeneizzazione per l'equazione di Helmholtz con condizioni al contorno di Neumann. Nel Capitolo 9 consideriamo problemi di perturbazione singolare e di omogeneizzazione con condizioni al contorno di Dirichlet per l'equazione di Helmholtz, mentre nel Capitolo 10 studiamo problemi al contorno di Robin (lineari e nonlineari). Il Capitolo 11 è dedicato allo studio di potenziali di strato periodici per operatori differenziali generali del secondo ordine a coefficienti costanti. Alla fine della Tesi abbiamo incluso delle Appendici con alcuni risultati utilizzati.

Singular perturbation and homogenization problems in a periodically perforated domain. A functional analytic approach

MUSOLINO, PAOLO
2012

Abstract

Questa Tesi è dedicata all'analisi di problemi di perturbazione singolare e omogeneizzazione nello spazio Euclideo periodicamente perforato. Studiamo il comportamento delle soluzioni di problemi al contorno per le equazioni di Laplace, di Poisson e di Helmholtz al tendere a 0 di parametri legati al diametro dei buchi o alla dimensione delle celle di periodicità. La Tesi è organizzata come segue. Nel Capitolo 1, presentiamo due costruzioni note di un analogo periodico della soluzione fondamentale dell'equazione di Laplace, e introduciamo potenziali di strato e di volume periodici per l'equazione di Laplace e alcuni risultati basilari di teoria del potenziale periodica. Il Capitolo 2 è dedicato a problemi di perturbazione singolare e omogeneizzazione per le equazioni di Laplace e Poisson con condizioni al bordo di Dirichlet e Neumann. Nel Capitolo 3 consideriamo il caso di problemi al contorno di Robin (lineari e nonlineari) per l'equazione di Laplace, mentre nel Capitolo 4 analizziamo problemi di trasmissione (lineari e nonlineari). Nel Capitolo 5 applichiamo i risultati del Capitolo 4 al fine di provare l'analiticità della conduttività effettiva di un composto periodico. Il Capitolo 6 è dedicato alla costruzione di un analogo periodico della soluzione fondamentale dell'equazione di Helmholtz e dei corrispondenti potenziali di strato. Nel Capitolo 7 raccogliamo alcuni risultati di teoria spettrale per l'operatore di Laplace in domini periodicamente perforati. Nel Capitolo 8 studiamo problemi di perturbazione singolare e di omogeneizzazione per l'equazione di Helmholtz con condizioni al contorno di Neumann. Nel Capitolo 9 consideriamo problemi di perturbazione singolare e di omogeneizzazione con condizioni al contorno di Dirichlet per l'equazione di Helmholtz, mentre nel Capitolo 10 studiamo problemi al contorno di Robin (lineari e nonlineari). Il Capitolo 11 è dedicato allo studio di potenziali di strato periodici per operatori differenziali generali del secondo ordine a coefficienti costanti. Alla fine della Tesi abbiamo incluso delle Appendici con alcuni risultati utilizzati.
25-gen-2012
Inglese
periodic boundary value problems, singularly perturbed domain, periodically perforated domain, singular perturbation, homogenization, Laplace equation, Helmholtz equation, real analytic continuation in Banach space
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
20120124-Musolino-PhD-DIssertation-Final.pdf

accesso aperto

Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110191
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110191