L'utilizzo dei magneti permanenti nel campo delle macchine elettriche rotanti attualmente rappresenta una scelta comune e vantaggiosa nella quasi totalità delle applicazioni: ad esempio il trasporto, i processi industriali, gli impianti di generazione, gli attuatori, gli elettrodomestici. Le potenze di queste macchine elettriche spaziano dalle frazioni di Watt ai milioni di Watt. Tra le varie tipologie di macchine elettriche provviste di eccitazione mediante magnete permanente, le macchine sincrone a magnete permanente occupano un posto di rilievo nella ricerca, sia in ambito accademico che industriale. In particolare queste macchine sincrone permettono di combinare più vantaggi, come alto rendimento, elevato fattore di potenza, alta densità di coppia, notevole capacità di sovraccarico, robusta costruzione, limitata manutenzione, volumi compatti e quindi peso ridotto. Negli ultimi anni questi vantaggi stanno diventando delle caratteristiche cruciali e preferibili, in particolare per le applicazioni non prettamente industriali come la trazione elettrica dei veicoli. Infatti, per queste nuove applicazioni, la compattezza dei volumi e le alte prestazioni in termini di coppia e rendimento sono le caratteristiche vincenti che li fanno preferire ai motori asincroni. Nell'ambito automobilistico le macchine elettriche a velocità variabile, come i motori sincroni a magnete permanente, sono attualmente sempre più utilizzati per migliorare le prestazioni complessive dei veicoli. In aggiunta ai vantaggi già indicati, i motori a magnete permanente permettono una notevole fessibilità di progettazione. L'assenza di avvolgimento di eccitazione rotorico ha permesso di studiare varie di strutture. Conseguentemente, grazie a progettazioni dedicate, è possibile ottenere macchine che esibiscono una capacità di tollerare alcuni guasti o macchine in grado di operare lungo un campo di velocità estremamente esteso. Queste peculiarità sono spesso richieste dalle applicazioni di mobilità, come il trasporto, che richiedono inoltre un alto livello di affdabilità. Nonostante questi indubbi vantaggi sussistono delle problematiche legate all'utilizzo dei magneti permanenti. La tendenza odierna è, quindi, quella di studiare le congurazioni che permettono di limitare o minimizzare la quantità di magnete permanente, pur soddisfando le richieste di progetto. Tra le soluzioni proposte, i motori sincroni a riluttanza assistita dai magneti permanenti o più semplicemente i motori a magnete interno rappresentano una valida scelta adatta alle richieste nel campo del trasporto. Grazie ad una struttura rotorica anisotropa, questi motori sono in grado di produrre coppia utile anche in assenza di magnete permanente. L'utilizzo dei magneti permanenti permette di migliorarne le prestazioni eliminando alcuni svantaggi. Questi motori sono oggetto di studio di un gran numero di gruppi universitari di ricerca. Lo scopo di questa tesi di dottorato è analizzare in dettaglio alcuni aspetti di progettazione elettromeccanica delle macchine sincrone a magneti permanenti interni. Infatti la complessa struttura geometrica rotorica, che permette di ottenere i noti vantaggi, determina anche una serie di problematiche. In generale, queste macchine elettriche sono caratterizzate da elevate oscillazioni di coppia, distorsioni dei fussi magnetici e conseguenti perdite nel ferro, vibrazioni, ed altri eetti parassiti. Quindi, l'obiettivo della tesi è analizzare alcuni di questi aspetti mediante procedure analitiche, simulazioni agli elementi niti e prove sperimentali al ne di valutare regole di progettazione che permettano di minimizzare gli svantaggi dei questa congurazione. Nel ambito dell'analisi delle metodologie di progettazione del motore a magneti permanenti interni sono state arontate le seguenti tematiche di studio: 1) Investigare gli eetti della geometria rotorica sull'oscillazione di coppia ed individuare le soluzioni che permettono di minimizzare questo fenomeno. 2) Investigare gli eetti della geometria rotorica sulle uttuazioni dell'induzione nei denti statorici, e le conseguenti perdite nel ferro per eetto delle correnti parassite. In questo contesto, individuare le soluzioni che permettono di limitare le perdite alle alte velocità in condizioni di defussaggio. 3) Investigare il principio di produzione della coppia elettromagnetica, in particolare della componente non legata ai magneti permanenti, ed analizzare alcuni eletti parassiti legati all'utilizzo di avvolgimenti a passo frazionario. 4) Investigare una particolare macchina, il motore a doppio avvolgimento trifase, che permette di ottenere un aumento della tolleranza ai guasti pur richiedendo componentistica standard.

Design and Analysis of Interior Permanent Magnet Synchronous Machines for Electric Vehicles

BARCARO, MASSIMO
2011

Abstract

L'utilizzo dei magneti permanenti nel campo delle macchine elettriche rotanti attualmente rappresenta una scelta comune e vantaggiosa nella quasi totalità delle applicazioni: ad esempio il trasporto, i processi industriali, gli impianti di generazione, gli attuatori, gli elettrodomestici. Le potenze di queste macchine elettriche spaziano dalle frazioni di Watt ai milioni di Watt. Tra le varie tipologie di macchine elettriche provviste di eccitazione mediante magnete permanente, le macchine sincrone a magnete permanente occupano un posto di rilievo nella ricerca, sia in ambito accademico che industriale. In particolare queste macchine sincrone permettono di combinare più vantaggi, come alto rendimento, elevato fattore di potenza, alta densità di coppia, notevole capacità di sovraccarico, robusta costruzione, limitata manutenzione, volumi compatti e quindi peso ridotto. Negli ultimi anni questi vantaggi stanno diventando delle caratteristiche cruciali e preferibili, in particolare per le applicazioni non prettamente industriali come la trazione elettrica dei veicoli. Infatti, per queste nuove applicazioni, la compattezza dei volumi e le alte prestazioni in termini di coppia e rendimento sono le caratteristiche vincenti che li fanno preferire ai motori asincroni. Nell'ambito automobilistico le macchine elettriche a velocità variabile, come i motori sincroni a magnete permanente, sono attualmente sempre più utilizzati per migliorare le prestazioni complessive dei veicoli. In aggiunta ai vantaggi già indicati, i motori a magnete permanente permettono una notevole fessibilità di progettazione. L'assenza di avvolgimento di eccitazione rotorico ha permesso di studiare varie di strutture. Conseguentemente, grazie a progettazioni dedicate, è possibile ottenere macchine che esibiscono una capacità di tollerare alcuni guasti o macchine in grado di operare lungo un campo di velocità estremamente esteso. Queste peculiarità sono spesso richieste dalle applicazioni di mobilità, come il trasporto, che richiedono inoltre un alto livello di affdabilità. Nonostante questi indubbi vantaggi sussistono delle problematiche legate all'utilizzo dei magneti permanenti. La tendenza odierna è, quindi, quella di studiare le congurazioni che permettono di limitare o minimizzare la quantità di magnete permanente, pur soddisfando le richieste di progetto. Tra le soluzioni proposte, i motori sincroni a riluttanza assistita dai magneti permanenti o più semplicemente i motori a magnete interno rappresentano una valida scelta adatta alle richieste nel campo del trasporto. Grazie ad una struttura rotorica anisotropa, questi motori sono in grado di produrre coppia utile anche in assenza di magnete permanente. L'utilizzo dei magneti permanenti permette di migliorarne le prestazioni eliminando alcuni svantaggi. Questi motori sono oggetto di studio di un gran numero di gruppi universitari di ricerca. Lo scopo di questa tesi di dottorato è analizzare in dettaglio alcuni aspetti di progettazione elettromeccanica delle macchine sincrone a magneti permanenti interni. Infatti la complessa struttura geometrica rotorica, che permette di ottenere i noti vantaggi, determina anche una serie di problematiche. In generale, queste macchine elettriche sono caratterizzate da elevate oscillazioni di coppia, distorsioni dei fussi magnetici e conseguenti perdite nel ferro, vibrazioni, ed altri eetti parassiti. Quindi, l'obiettivo della tesi è analizzare alcuni di questi aspetti mediante procedure analitiche, simulazioni agli elementi niti e prove sperimentali al ne di valutare regole di progettazione che permettano di minimizzare gli svantaggi dei questa congurazione. Nel ambito dell'analisi delle metodologie di progettazione del motore a magneti permanenti interni sono state arontate le seguenti tematiche di studio: 1) Investigare gli eetti della geometria rotorica sull'oscillazione di coppia ed individuare le soluzioni che permettono di minimizzare questo fenomeno. 2) Investigare gli eetti della geometria rotorica sulle uttuazioni dell'induzione nei denti statorici, e le conseguenti perdite nel ferro per eetto delle correnti parassite. In questo contesto, individuare le soluzioni che permettono di limitare le perdite alle alte velocità in condizioni di defussaggio. 3) Investigare il principio di produzione della coppia elettromagnetica, in particolare della componente non legata ai magneti permanenti, ed analizzare alcuni eletti parassiti legati all'utilizzo di avvolgimenti a passo frazionario. 4) Investigare una particolare macchina, il motore a doppio avvolgimento trifase, che permette di ottenere un aumento della tolleranza ai guasti pur richiedendo componentistica standard.
26-gen-2011
Inglese
macchine elettriche motori sincroni magneti permanenti / electrical machines synchronous motors permanent magnet
Università degli studi di Padova
213
File in questo prodotto:
File Dimensione Formato  
Phd_Thesis_ELECR.pdf

accesso aperto

Dimensione 25.64 MB
Formato Adobe PDF
25.64 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110194
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110194