Il campo delle nanotecnologie è uno dei più innovativi e multidisciplinari della ricerca moderna. Sempre pi`u numerose diventano le tecniche per manipolare la materia su scala nanometrica, modificando così le proprietà fisico, chimiche e morfologiche a livelli mai raggiunti prima. Alla nano scala la manipolazione morfologica è accompagnata dal cambiamento delle proprietà che smettono di essere intrinseche della materia ma diventano dipendenti da altri fattori come la forma, la dimensione e l’ambiente in cui le nanostrutture sono immerse. Uno dei casi più eclatanti è il colore dell’oro e dell’argento quando sono sottoforma di particelle nanometriche. L’oro, ad esempio, può essere di colore rosso-vino, verde, blu e nero, semplicemente cambiando la forma o l’ambiente attorno ad esso. Manipolando la materia opportunamente possono comparire nuove proprietà come la trasmissione della luce attraverso aperture che sono molto più piccole della lunghezza d’onda della luce, dando la possibilità di ottenere il controllo della propagazione della luce ad un livello molto intimo. Si può capire quindi come per poter sfruttare le enormi potenzialità offerte dalle nanotecnologie sia importante avere tecnologie di fabbricazione che permettano un preciso controllo nella produzione di oggetti nanometrici o con strutture nanometriche. Le tecnologie al momento disponibili che permettono di creare strutture con precisione molto elevata (pochi nanometri) sono tecnologie ”seriali” come l’Electron Beam Lithography o il Focused Ion Beam. Queste tecniche sono limitate alla produzione di un oggetto alla volta e quindi comportano costi elevati e lunghi tempi. Le tecnologie ”parallele” derivano dall’industria dei semiconduttori e sono tecniche litografiche che hanno come limite la risoluzione della luce utilizzata ( 200nm). In questo lavoro di tesi si cercherà di dare risposta alla domanda di tecniche di fabbricazione di strutture nanometriche utilizzando una tecnica che abbia le seguenti caratteristiche: • quickness • low cost • ability to synthesize very small nanostructures • reproducibility • easy implementation Si è scelto di utilizzare la capacità della materia di organizzarsi spontaneamente in strutture ordinate. In particolare si è sfruttata la tendenza di nanoparticelle sferiche di polistirene ad impaccarsi in strutture compatte ed ordinate costituendo dei ”cristalli colloidali”. Un singolo strato di nanosfere autoassemblate è una struttura interessante perchè presenta dei pori tra le particelle di forma e dimensioni ben definite, che possono essere modificate cambiando le dimensioni delle sfere che costituiscono il cristallo bidimensionale. Verrà illustrato un metodo semplice e rapido per ottenere questi monostrati di particelle ordinate e per poterli depositare su vari substrati. Questi cristalli bidimensionali verranno utilizzati per depositare una matrice ordinata di nanoparticelle plasmoniche, con un ottimo controllo sulla loro forma e dimensioni, consentendo di realizzare particelle con proprietà su misura per l’applicazione desiderata. Verranno anche studiate applicazioni di queste nanoparticelle come sensori di molecole e per amplificare il segnale Raman grazie all’effetto SERS. Verrà inoltre studiato l’aumento di temperatura di queste nanoparticelle quando vengono illuminate da un laser risonante con la loro risonanza di plasma di superficie. Per applicazioni spettroscopiche applicate a sistemi biologici il cambiamento di temperatura può avere effetti rilevanti in un ambiente complesso come quello biologico. In seguito verrà dimostrato come questi cristalli colloidali bidimensionali possono essere utilizzati per creare altre classi di nanostrutture, come ad esempio una matrice di buchi nanometrici in un film metallico. Queste strutture sono studiate da quando è stato scoperta la loro capacità di far trasmettere attraverso strutture che sono molto minori del limite di diffrazione per le lunghezze d’onda trasmesse. Una sintesi che si basa sulle nanosfere autoassemblate può essere interessante per queste strutture grazie alla sua intrinseca flessibilità. Si possono infatti cambiare in modo molto semplice i parametri geometrici che caratterizzano la matrice di buchi quali le dimensioni dei buchi e il periodo degli stessi. Un’altra tipologia di nanostrutture che verrà realizzata sono film sottili nanostrutturati di TiO2. La titania è un semiconduttore di grande interesse tecnologico in molti campi diversi: dalla catalisi, alla conversione di energia ai sensori di gas. Verranno fabbricati, con la stessa tecnologia, dei film con una porosità ordinata e delle superfici nanostrutturate con un motivo a incavi. Infine verrà dimostrata la possibilità di utilizzare i cristalli colloidali 2D accoppiati con una tecnologia molto utilizzata dall’industria dei semiconduttori quale l’impiantatore ionico. Pattern nanometrici verranno realizzati su silicio utilizzando le nanoparticelle autoassemblate come maschera per il fascio ionico.
TWO DIMENSIONAL SELF ASSEMBLY OF NANOSPHERES, A VERSATILE METHOD FOR NANOFABRICATION
PEROTTO, GIOVANNI
2010
Abstract
Il campo delle nanotecnologie è uno dei più innovativi e multidisciplinari della ricerca moderna. Sempre pi`u numerose diventano le tecniche per manipolare la materia su scala nanometrica, modificando così le proprietà fisico, chimiche e morfologiche a livelli mai raggiunti prima. Alla nano scala la manipolazione morfologica è accompagnata dal cambiamento delle proprietà che smettono di essere intrinseche della materia ma diventano dipendenti da altri fattori come la forma, la dimensione e l’ambiente in cui le nanostrutture sono immerse. Uno dei casi più eclatanti è il colore dell’oro e dell’argento quando sono sottoforma di particelle nanometriche. L’oro, ad esempio, può essere di colore rosso-vino, verde, blu e nero, semplicemente cambiando la forma o l’ambiente attorno ad esso. Manipolando la materia opportunamente possono comparire nuove proprietà come la trasmissione della luce attraverso aperture che sono molto più piccole della lunghezza d’onda della luce, dando la possibilità di ottenere il controllo della propagazione della luce ad un livello molto intimo. Si può capire quindi come per poter sfruttare le enormi potenzialità offerte dalle nanotecnologie sia importante avere tecnologie di fabbricazione che permettano un preciso controllo nella produzione di oggetti nanometrici o con strutture nanometriche. Le tecnologie al momento disponibili che permettono di creare strutture con precisione molto elevata (pochi nanometri) sono tecnologie ”seriali” come l’Electron Beam Lithography o il Focused Ion Beam. Queste tecniche sono limitate alla produzione di un oggetto alla volta e quindi comportano costi elevati e lunghi tempi. Le tecnologie ”parallele” derivano dall’industria dei semiconduttori e sono tecniche litografiche che hanno come limite la risoluzione della luce utilizzata ( 200nm). In questo lavoro di tesi si cercherà di dare risposta alla domanda di tecniche di fabbricazione di strutture nanometriche utilizzando una tecnica che abbia le seguenti caratteristiche: • quickness • low cost • ability to synthesize very small nanostructures • reproducibility • easy implementation Si è scelto di utilizzare la capacità della materia di organizzarsi spontaneamente in strutture ordinate. In particolare si è sfruttata la tendenza di nanoparticelle sferiche di polistirene ad impaccarsi in strutture compatte ed ordinate costituendo dei ”cristalli colloidali”. Un singolo strato di nanosfere autoassemblate è una struttura interessante perchè presenta dei pori tra le particelle di forma e dimensioni ben definite, che possono essere modificate cambiando le dimensioni delle sfere che costituiscono il cristallo bidimensionale. Verrà illustrato un metodo semplice e rapido per ottenere questi monostrati di particelle ordinate e per poterli depositare su vari substrati. Questi cristalli bidimensionali verranno utilizzati per depositare una matrice ordinata di nanoparticelle plasmoniche, con un ottimo controllo sulla loro forma e dimensioni, consentendo di realizzare particelle con proprietà su misura per l’applicazione desiderata. Verranno anche studiate applicazioni di queste nanoparticelle come sensori di molecole e per amplificare il segnale Raman grazie all’effetto SERS. Verrà inoltre studiato l’aumento di temperatura di queste nanoparticelle quando vengono illuminate da un laser risonante con la loro risonanza di plasma di superficie. Per applicazioni spettroscopiche applicate a sistemi biologici il cambiamento di temperatura può avere effetti rilevanti in un ambiente complesso come quello biologico. In seguito verrà dimostrato come questi cristalli colloidali bidimensionali possono essere utilizzati per creare altre classi di nanostrutture, come ad esempio una matrice di buchi nanometrici in un film metallico. Queste strutture sono studiate da quando è stato scoperta la loro capacità di far trasmettere attraverso strutture che sono molto minori del limite di diffrazione per le lunghezze d’onda trasmesse. Una sintesi che si basa sulle nanosfere autoassemblate può essere interessante per queste strutture grazie alla sua intrinseca flessibilità. Si possono infatti cambiare in modo molto semplice i parametri geometrici che caratterizzano la matrice di buchi quali le dimensioni dei buchi e il periodo degli stessi. Un’altra tipologia di nanostrutture che verrà realizzata sono film sottili nanostrutturati di TiO2. La titania è un semiconduttore di grande interesse tecnologico in molti campi diversi: dalla catalisi, alla conversione di energia ai sensori di gas. Verranno fabbricati, con la stessa tecnologia, dei film con una porosità ordinata e delle superfici nanostrutturate con un motivo a incavi. Infine verrà dimostrata la possibilità di utilizzare i cristalli colloidali 2D accoppiati con una tecnologia molto utilizzata dall’industria dei semiconduttori quale l’impiantatore ionico. Pattern nanometrici verranno realizzati su silicio utilizzando le nanoparticelle autoassemblate come maschera per il fascio ionico.File | Dimensione | Formato | |
---|---|---|---|
Perotto_PhdThesis.pdf
accesso aperto
Dimensione
7.44 MB
Formato
Adobe PDF
|
7.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/110210
URN:NBN:IT:UNIPD-110210