Negli ultimi decenni la tecnologia di trasmissione di dati elettronici ha progressivamente raggiunto i suoi limiti di prestazione ed al giorno d'oggi è evidente che ulteriori sviluppi possono essere raggiunti solo con l'utilizzo di sistemi ottici integrati. Perciò la ricerca relativa all'ottica non lineare ha avuto una rapida espansione negli ultimi ventanni, sviluppando molte applicazioni fotoniche che risultano rilevanti sia per il mercato industriale che per quello privato. In particolare, tra i materiali elettro-ottici i fenomeni che si basano sull'effetto fotorifrattivo stanno senza dubbio avendo un ruolo importante nella realizzazione di dispositivi per la trasmissione e il trattamento di segnali optoelettronici e il niobato di litio (LiNbO3) è un materiale promettente, dati i suoi alti coefficienti elettro-ottici e ottici non lineari. Inoltre il niobato di litio offre un incredibile versatilità come substrato per ottiche integrate, permettendo di realizzare sullo stesso cristallo elementi ottici con differenti funzioni, sfruttando varie tecnologie di microstrutturazione. Questo tipo di dispositivi richiede la capacità di cambiare localmente le proprietà fisiche del materiale, drogandolo con un opportuno elemento su una regione limitata del substrato. In particolare, è noto che drogando il niobato di litio con ferro le proprietà fotorifrattive del material vengono notevolmente migliorate, così per realizzare un sistema ottico integrato che presenti uno stadio fotorifrattivo si deve realizzare un drogaggio locale con ferro. In questo lavoro il processo di diffusione termica è sfruttato per realizzare cristalli di niobato di litio drogati localmente con ferro e sono studiate le proprietà strutturali e fotorifrattive dello strato drogato. In particolare è stato sviluppato e costruito un apparato ottico in grado di investigare solo un'area limitata dello strato drogato, permettendo in tal modo ad ogni profondità all'interno della zona drogata di mettere in relazione la concentrazione di ferro esaminata con la corrispondente risposta fotorifrattiva del materiale. In questo modo è possibile realizzare profili in profondità delle principali grandezze fisiche coinvolte nell'effetto fotorifrattivo e meccanismi fisici mai studiati prima possono essere ora investigati.
Local doping of lithium niobate by iron diffusion: a study of photorefractive properties
ZALTRON, ANNAMARIA
2011
Abstract
Negli ultimi decenni la tecnologia di trasmissione di dati elettronici ha progressivamente raggiunto i suoi limiti di prestazione ed al giorno d'oggi è evidente che ulteriori sviluppi possono essere raggiunti solo con l'utilizzo di sistemi ottici integrati. Perciò la ricerca relativa all'ottica non lineare ha avuto una rapida espansione negli ultimi ventanni, sviluppando molte applicazioni fotoniche che risultano rilevanti sia per il mercato industriale che per quello privato. In particolare, tra i materiali elettro-ottici i fenomeni che si basano sull'effetto fotorifrattivo stanno senza dubbio avendo un ruolo importante nella realizzazione di dispositivi per la trasmissione e il trattamento di segnali optoelettronici e il niobato di litio (LiNbO3) è un materiale promettente, dati i suoi alti coefficienti elettro-ottici e ottici non lineari. Inoltre il niobato di litio offre un incredibile versatilità come substrato per ottiche integrate, permettendo di realizzare sullo stesso cristallo elementi ottici con differenti funzioni, sfruttando varie tecnologie di microstrutturazione. Questo tipo di dispositivi richiede la capacità di cambiare localmente le proprietà fisiche del materiale, drogandolo con un opportuno elemento su una regione limitata del substrato. In particolare, è noto che drogando il niobato di litio con ferro le proprietà fotorifrattive del material vengono notevolmente migliorate, così per realizzare un sistema ottico integrato che presenti uno stadio fotorifrattivo si deve realizzare un drogaggio locale con ferro. In questo lavoro il processo di diffusione termica è sfruttato per realizzare cristalli di niobato di litio drogati localmente con ferro e sono studiate le proprietà strutturali e fotorifrattive dello strato drogato. In particolare è stato sviluppato e costruito un apparato ottico in grado di investigare solo un'area limitata dello strato drogato, permettendo in tal modo ad ogni profondità all'interno della zona drogata di mettere in relazione la concentrazione di ferro esaminata con la corrispondente risposta fotorifrattiva del materiale. In questo modo è possibile realizzare profili in profondità delle principali grandezze fisiche coinvolte nell'effetto fotorifrattivo e meccanismi fisici mai studiati prima possono essere ora investigati.File | Dimensione | Formato | |
---|---|---|---|
TESI_29-01-2010.pdf
accesso aperto
Dimensione
57.31 MB
Formato
Adobe PDF
|
57.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/110235
URN:NBN:IT:UNIPD-110235