Il DNA mitocondriale (mtDNA), a differenza di quello nucleare, è sottoposto ad un continuo turnover e si replica lungo tutto il ciclo cellulare. Affinché la sintesi e la riparazione del DNA avvengano correttamente è necessario che vi sia un apporto bilanciato di deossiribonucleosidi trifosfato (dNTP). Le cellule di mammifero contengono due pool di dNTP separati, uno citosolico e uno mitocondriale, che si trovano in comunicazione tra loro e il cui mantenimento avviene attraverso due vie di sintesi: la via de novo e la via di recupero citosolica e mitocondriale. Nelle cellule proliferanti il dTTP è sintetizzato principalmente nel citosol attraverso la via de novo il cui enzima chiave è la ribonucleotide reduttasi (RNR), in fase S costituita dalle subunità R1/R2, e in misura minore dalla via di recupero di deossiribonucleosidi, dove la timidina viene fosforilata a dTMP dalla timidina chinasi citosolica (TK1). All’interno delle cellule la TK1 ha un’attività cento volte superiore a quella della timidina chinasi mitocondriale (TK2) e perciò il suo ruolo è predominante nella sintesi di recupero della timidina in fase S. Le vie anaboliche sono bilanciate dalle vie cataboliche catalizzate dalla timidina fosforilasi (TP), che degrada la timidina a deossiuridina, e dalle deossinucleotidasi citosolica (cdN) e mitocondriale (mdN), che convertono il dTMP in timidina costituendo un substrate cycle regolativo rispettivamente con la TK1 e la TK2. Sia la subunità R2 della RNR che la TK1 sono regolate con il ciclo cellulare e subiscono una degradazione proteolitica in tarda mitosi. Nelle cellule non ciclanti la sintesi de novo si riduce ad un 2% di quella presente in condizioni di proliferazione e dipende da R1/p53R2, mentre la timidina chinasi mitocondriale, TK2, è l’unico enzima responsabile della fosforilazione della timidina nella sintesi di recupero del dTTP. Il risultato di questa riorganizzazione comporta un ridimensionamento dei pool nucleotidici citoplasmatici e mitocondriali, che si riducono entrambi di circa 10 volte nelle cellule di mammifero quiescenti. In questo modo le cellule ricalibrano la produzione dei dNTP in funzione del ridotto consumo di precursori, limitato alla replicazione del mtDNA (una piccola percentuale rispetto al DNA totale). In questo contesto i ruoli della TK2 e di p53R2 assumono notevole rilevanza e ciò è dimostrato dal fatto che mutazioni in questi enzimi causano patologie caratterizzate da deplezione del mtDNA (sindromi da deplezione del mtDNA o MDS). Esse rappresentano una classe di malattie mitocondriali ereditarie, a trasmissione autosomica recessiva, clinicamente eterogenea e caratterizzata da una riduzione quantitativa del numero di copie di mtDNA e sono causate da mutazioni in geni nucleari codificanti proteine coinvolte nel metabolismo dei dNTP o nella replicazione del mtDNA. Le MDS sono caratterizzate da un’elevata tessuto-specificità e interessano tessuti differenziati, dove le cellule non sono in attiva proliferazione. L’inattivazione genica della TK2 o di p53R2 è correlata all’insorgenza di una forma miopatica di MDS, in cui il muscolo è il principale tessuto colpito. La patologia è stata aattribuita ad uno sbilanciamento dei pool dei dNTP nei tessuti affetti. Lo scopo del mio lavoro di dottorato è quello di individuare le basi molecolari che determinano la tessuto-specificità nelle MDS miopatiche dovute a mutazioni della TK2 o di p53R2. Nella prima parte mi sono dedicata allo studio di colture quiescenti di fibroblasti di pelle provenienti da pazienti con deficienza della TK2. Il mio obiettivo era quello di capire se nei tipi cellulari non colpiti dalla miopatia, come i fibroblasti, ci fossero dei meccanismi di compensazione in grado di tamponare gli effetti di una ridotta attività della timidina chinasi mitocondriale. Nella seconda parte mi sono dedicata allo studio di un modello di cellule muscolari differenziate in coltura, per cercare di individuare che cosa rende il tessuto muscolare così vulnerabile all’inattivazione di TK2 e p53R2. Nel confronto di questi due modelli cellulari abbiamo mirato all’individuazione di elementi divergenti che potessero costituire punti di fragilità del muscolo rispetto a una deficienza genetica delle due proteine. In cellule proliferanti la deficienza della TK2 o di p53R2 è ininfluente per il mantenimento del pool mitocondriale del dTTP, prodotto principalmente nel citosol attraverso l’attività di R1/R2 e della TK1. Di conseguenza ho eseguito tutti gli esperimenti in colture quiescenti o differenziate, in cui il mantenimento del pool del dTTP è garantito dall’attività della TK2 e della via de novo catalizzata da R1/p53R2. In questo contesto i ruoli della TK2 e di p53R2 assumono notevole rilevanza e ciò è dimostrato dal fatto che mutazioni in questi enzimi causano patologie caratterizzate da deplezione del mtDNA (sindromi da deplezione del mtDNA o MDS). Esse rappresentano una classe di malattie mitocondriali ereditarie, a trasmissione autosomica recessiva, clinicamente eterogenea e caratterizzata da una riduzione quantitativa del numero di copie di mtDNA e sono causate da mutazioni in geni nucleari codificanti proteine coinvolte nel metabolismo dei dNTP o nella replicazione del mtDNA. Le MDS sono caratterizzate da un’elevata tessuto-specificità e interessano tessuti differenziati, dove le cellule non sono in attiva proliferazione. L’inattivazione genica della TK2 o di p53R2 è correlata all’insorgenza di una forma miopatica di MDS, in cui il muscolo è il principale tessuto colpito. La patologia è stata aattribuita ad uno sbilanciamento dei pool dei dNTP nei tessuti affetti. Lo scopo del mio lavoro di dottorato è quello di individuare le basi molecolari che determinano la tessuto-specificità nelle MDS miopatiche dovute a mutazioni della TK2 o di p53R2. Nella prima parte mi sono dedicata allo studio di colture quiescenti di fibroblasti di pelle provenienti da pazienti con deficienza della TK2. Il mio obiettivo era quello di capire se nei tipi cellulari non colpiti dalla miopatia, come i fibroblasti, ci fossero dei meccanismi di compensazione in grado di tamponare gli effetti di una ridotta attività della timidina chinasi mitocondriale. Nella seconda parte mi sono dedicata allo studio di un modello di cellule muscolari differenziate in coltura, per cercare di individuare che cosa rende il tessuto muscolare così vulnerabile all’inattivazione di TK2 e p53R2. Nel confronto di questi due modelli cellulari abbiamo mirato all’individuazione di elementi divergenti che potessero costituire punti di fragilità del muscolo rispetto a una deficienza genetica delle due proteine. In cellule proliferanti la deficienza della TK2 o di p53R2 è ininfluente per il mantenimento del pool mitocondriale del dTTP, prodotto principalmente nel citosol attraverso l’attività di R1/R2 e della TK1. Di conseguenza ho eseguito tutti gli esperimenti in colture quiescenti o differenziate, in cui il mantenimento del pool del dTTP è garantito dall’attività della TK2 e della via de novo catalizzata da R1/p53R2. Nei fibroblasti la quiescenza è stata indotta in colture confluenti riducendo la percentuale di siero nel mezzo di coltura dal 10% allo 0.1% e mantenendo le cellule in condizioni quiescenti per 10 giorni, prima di eseguire gli esperimenti. Ho studiato colture quiescenti di due linee di fibroblasti di pelle provenienti da pazienti (Pa e Pb), genotipicamente distinti, portatori di mutazioni in eterozigosi nel gene della TK2 (T77M/R161K e R152G/ K171del). Le due linee di pazienti sono state confrontate con due linee di fibroblasti di controllo (Ca e Cb) provenienti da biopsie di soggetti sani di età corrispondente. Ho misurato l’attività enzimatica della TK2 negli estratti cellulari. Le cellule dei pazienti mostrano una notevole riduzione di attività TK2, gli estratti Pa hanno un’attività TK2 più bassa (circa il 5% dei controlli) rispetto agli estratti Pb (circa il 40% dei controlli). Tuttavia a questa riduzione di attività enzimatica della TK2 non corrisponde uno sbilanciamento dei pool dei dNTP: le dimensioni dei pool citosolici e mitocondriali del dTTP sono paragonabili a quelle dei controlli e anche la composizione dei pool dei quattro dNTP non subisce modificazioni. Ricercando possibili meccanismi che potessero compensare la deficienza della TK2 nelle linee mutanti, ho misurato le attività enzimatiche della timidina fosforilasi e delle deossinucleotidasi e l’espressione delle tre subunità della RNR, valutata a livello di mRNA mediante real-time PCR e a livello proteico mediante western blot. Nelle linee mutate non ho ritrovato meccanismi di adattamento metabolico quali una riduzione delle vie cataboliche o una maggior dipendenza dalla via de novo di R1/p53R2. Confrontando le dinamiche del pool del dTTP nei mutanti e nei controlli, in esperimenti di marcatura con timidina triziata, ho osservato che nonostante la ridotta attività TK2 i mutanti fosforilano il precursore con la stessa efficienza dei controlli. Dall’analisi del turnover del dTTP, attraverso esperimenti di pulse-chase, risulta che le cellule di controllo sintetizzano il dTTP in situ con la stessa efficienza delle cellule mutate, ad un tasso 10 volte inferiore a quello misurato nei saggi enzimatici eseguiti negli estratti proteici. L’espressione della TK2 aumenta in fibroblasti di pelle wild-type quiescenti (Rampazzo et al., 2007), ma l’enzima sembra lavorare a livelli inferiori alle sue potenzialità. Dai risultati ottenuti in questo mio lavoro, una piccola percentuale dell’attività potenziale della TK2 sembra venga effettivamente utilizzata per mantenere il pool del dTTP nei fibroblasti wild-type. Nelle cellule mutanti, invece, i tassi di fosforilazione in vitro (in estratti proteici) e in situ (in colture cellulari) non differiscono. Si potrebbe pensare che queste cellule siano in grado di mantenere adeguati livelli del pool del dTTP sfruttando completamente la loro attività TK2 residua. Ciò spiegherebbe l’assenza di deplezione del mtDNA riscontrata in queste linee mutate (Frangini et al., 2009). Nella linea di mioblasti murini C2C12 si può indurre il differenziamento sostituendo il terreno di coltura con un mezzo al 2% di siero di cavallo (terreno di differenziamento) : i mioblasti diventano miociti post-mitotici e si fondono in sincizi multinucleati detti miotubi, che esibiscono attività contrattile. Tuttavia, colture differenziate di C2C12 contengono una frazione significativa di cellule mononucleate, in cui la quantità di dNTP e l’assetto enzimatico differiscono rispetto ai miotubi differenziati. Ho quindi messo a punto un protocollo che permette di separare la frazione di miotubi da quella di mioblasti a partire da una coltura differenziata. La purezza delle frazioni è stata valutata misurando l’attività enzimatica della TK1 (marcatore di cellule proliferanti) e l’espressione di proteine muscolo-specifiche, la miogenina e la miosina, da cui si può stimare il grado di differenziamento. Grazie a questo protocollo di purificazione sono riuscita ad ottenere una frazione di miotubi differenziati in cui la presenza di cellule mononucleate non fuse è minimizzata. Ho quindi svolto una caratterizzazione dei miotubi misurando l’espressione degli enzimi coinvolti nelle vie biosintetiche dei deossinucleotidi, l’attività enzimatica degli enzimi della sintesi di recupero del dTTP e la composizione dei pool cellulari totali dei quattro dNTP. Ho preso in esame in particolare le modificazioni che si instaurano con il differenziamento dei mioblasti in miotubi, alla ricerca di eventuali differenze rispetto a quanto già osservato in fibroblasti di pelle al passaggio dalla proliferazione alla quiescenza. La differenza che spicca maggiormente da questo confronto è la presenza di un’attività molto bassa della TK2, che non aumenta con il differenziamento (nei fibroblasti che entrano in quiescenza aumenta invece di circa 3 volte). Dal confronto del modello mioblasti/miotubi con il muscolo scheletrico, effettuato in collaborazione con un altro laboratorio mediante analisi di microarray, è emersa una stretta similarità tra i profili di espressione dei geni del metabolismo dei dNTP nei miotubi e nel muscolo. Abbiamo quindi deciso usare questo modello cellulare per simulare in vitro le MDS miopatiche correlate a mutazioni di p53R2 e della TK2. Ho messo a punto un protocollo di trasfezione con siRNA Stealth (Invitrogen) che combinasse trasfezione e differenziamento ottenendo un silenziamento dell’80-90% per p53R2 e del 60-70% per la TK2. Nelle C2C12 in coltura il differenziamento determina un’espansione del numero di copie del mDNA di circa 7-8 volte rispetto ai mioblasti proliferanti, in conseguenza della stimolazione della biogenesi mitocondriale che accompagna la miogenesi. La quantificazione del mtDNA mediante real-time PCR quantitativa nei miotubi silenziati per la TK2 mostra una deplezione di circa il 50% a soli 4 giorni di differenziamento; quando è p53R2 ad essere silenziata, gli effetti sul mtDNA iniziano a manifestarsi all’ottavo giorno di differenziamento. Una differenza temporale nella manifestazione fenotipica è stata osservata anche tra i topi TK2-/- (Zhou et al., 2008; Akman et al., 2008) e p53R2-/- (Kimura et al., 2003), i primi iniziano a mostrare sintomi a 7 giorni dalla nascita, mentre i secondi a 8 settimane. Da questi esperimenti preliminari di silenziamento possiamo affermare di aver ottenuto un modello cellulare per le MDS miopatiche in cui si osserva deplezione del mtDNA. Non emergono indicazioni a favore di un meccanismo di compensazione trascrizionale per la deficienza di p53R2 e TK2 nell’espressione dei geni del metabolismo dei dNTP. Le prime determinazioni dei pool dei dNTP nelle colture silenziate non ci hanno permesso finora di chiarire le basi molecolari del fenotipo osservato. Gli esperimenti andranno sicuramente ripetuti. In particolare il procedimento della trasfezione determina una riduzione dell’efficienza di purificazione dei miotubi trasfettati, minando la riproducibilità dei risultati tra esperimenti diversi. Sarà necessario introdurre dei miglioramenti nella preparazione dei campioni per l’estrazione dei pool nucleotidici dalle cellule trasfettate per avere una determinazione più affidabile del loro contenuto di dNTP. Prevediamo che ulteriori indagini ci consentiranno di chiarire meglio il fenotipo di questi silenziamenti e di mettere in luce le relazioni tra la deplezione o la mancata espansione del mtDNA durante il differenziamento e la carenza di precursori.

Basi metaboliche per la tessuto-specificità delle sindromi miopatiche da deplezione del DNA mitocondriale

FRANGINI, MIRIAM
2011

Abstract

Il DNA mitocondriale (mtDNA), a differenza di quello nucleare, è sottoposto ad un continuo turnover e si replica lungo tutto il ciclo cellulare. Affinché la sintesi e la riparazione del DNA avvengano correttamente è necessario che vi sia un apporto bilanciato di deossiribonucleosidi trifosfato (dNTP). Le cellule di mammifero contengono due pool di dNTP separati, uno citosolico e uno mitocondriale, che si trovano in comunicazione tra loro e il cui mantenimento avviene attraverso due vie di sintesi: la via de novo e la via di recupero citosolica e mitocondriale. Nelle cellule proliferanti il dTTP è sintetizzato principalmente nel citosol attraverso la via de novo il cui enzima chiave è la ribonucleotide reduttasi (RNR), in fase S costituita dalle subunità R1/R2, e in misura minore dalla via di recupero di deossiribonucleosidi, dove la timidina viene fosforilata a dTMP dalla timidina chinasi citosolica (TK1). All’interno delle cellule la TK1 ha un’attività cento volte superiore a quella della timidina chinasi mitocondriale (TK2) e perciò il suo ruolo è predominante nella sintesi di recupero della timidina in fase S. Le vie anaboliche sono bilanciate dalle vie cataboliche catalizzate dalla timidina fosforilasi (TP), che degrada la timidina a deossiuridina, e dalle deossinucleotidasi citosolica (cdN) e mitocondriale (mdN), che convertono il dTMP in timidina costituendo un substrate cycle regolativo rispettivamente con la TK1 e la TK2. Sia la subunità R2 della RNR che la TK1 sono regolate con il ciclo cellulare e subiscono una degradazione proteolitica in tarda mitosi. Nelle cellule non ciclanti la sintesi de novo si riduce ad un 2% di quella presente in condizioni di proliferazione e dipende da R1/p53R2, mentre la timidina chinasi mitocondriale, TK2, è l’unico enzima responsabile della fosforilazione della timidina nella sintesi di recupero del dTTP. Il risultato di questa riorganizzazione comporta un ridimensionamento dei pool nucleotidici citoplasmatici e mitocondriali, che si riducono entrambi di circa 10 volte nelle cellule di mammifero quiescenti. In questo modo le cellule ricalibrano la produzione dei dNTP in funzione del ridotto consumo di precursori, limitato alla replicazione del mtDNA (una piccola percentuale rispetto al DNA totale). In questo contesto i ruoli della TK2 e di p53R2 assumono notevole rilevanza e ciò è dimostrato dal fatto che mutazioni in questi enzimi causano patologie caratterizzate da deplezione del mtDNA (sindromi da deplezione del mtDNA o MDS). Esse rappresentano una classe di malattie mitocondriali ereditarie, a trasmissione autosomica recessiva, clinicamente eterogenea e caratterizzata da una riduzione quantitativa del numero di copie di mtDNA e sono causate da mutazioni in geni nucleari codificanti proteine coinvolte nel metabolismo dei dNTP o nella replicazione del mtDNA. Le MDS sono caratterizzate da un’elevata tessuto-specificità e interessano tessuti differenziati, dove le cellule non sono in attiva proliferazione. L’inattivazione genica della TK2 o di p53R2 è correlata all’insorgenza di una forma miopatica di MDS, in cui il muscolo è il principale tessuto colpito. La patologia è stata aattribuita ad uno sbilanciamento dei pool dei dNTP nei tessuti affetti. Lo scopo del mio lavoro di dottorato è quello di individuare le basi molecolari che determinano la tessuto-specificità nelle MDS miopatiche dovute a mutazioni della TK2 o di p53R2. Nella prima parte mi sono dedicata allo studio di colture quiescenti di fibroblasti di pelle provenienti da pazienti con deficienza della TK2. Il mio obiettivo era quello di capire se nei tipi cellulari non colpiti dalla miopatia, come i fibroblasti, ci fossero dei meccanismi di compensazione in grado di tamponare gli effetti di una ridotta attività della timidina chinasi mitocondriale. Nella seconda parte mi sono dedicata allo studio di un modello di cellule muscolari differenziate in coltura, per cercare di individuare che cosa rende il tessuto muscolare così vulnerabile all’inattivazione di TK2 e p53R2. Nel confronto di questi due modelli cellulari abbiamo mirato all’individuazione di elementi divergenti che potessero costituire punti di fragilità del muscolo rispetto a una deficienza genetica delle due proteine. In cellule proliferanti la deficienza della TK2 o di p53R2 è ininfluente per il mantenimento del pool mitocondriale del dTTP, prodotto principalmente nel citosol attraverso l’attività di R1/R2 e della TK1. Di conseguenza ho eseguito tutti gli esperimenti in colture quiescenti o differenziate, in cui il mantenimento del pool del dTTP è garantito dall’attività della TK2 e della via de novo catalizzata da R1/p53R2. In questo contesto i ruoli della TK2 e di p53R2 assumono notevole rilevanza e ciò è dimostrato dal fatto che mutazioni in questi enzimi causano patologie caratterizzate da deplezione del mtDNA (sindromi da deplezione del mtDNA o MDS). Esse rappresentano una classe di malattie mitocondriali ereditarie, a trasmissione autosomica recessiva, clinicamente eterogenea e caratterizzata da una riduzione quantitativa del numero di copie di mtDNA e sono causate da mutazioni in geni nucleari codificanti proteine coinvolte nel metabolismo dei dNTP o nella replicazione del mtDNA. Le MDS sono caratterizzate da un’elevata tessuto-specificità e interessano tessuti differenziati, dove le cellule non sono in attiva proliferazione. L’inattivazione genica della TK2 o di p53R2 è correlata all’insorgenza di una forma miopatica di MDS, in cui il muscolo è il principale tessuto colpito. La patologia è stata aattribuita ad uno sbilanciamento dei pool dei dNTP nei tessuti affetti. Lo scopo del mio lavoro di dottorato è quello di individuare le basi molecolari che determinano la tessuto-specificità nelle MDS miopatiche dovute a mutazioni della TK2 o di p53R2. Nella prima parte mi sono dedicata allo studio di colture quiescenti di fibroblasti di pelle provenienti da pazienti con deficienza della TK2. Il mio obiettivo era quello di capire se nei tipi cellulari non colpiti dalla miopatia, come i fibroblasti, ci fossero dei meccanismi di compensazione in grado di tamponare gli effetti di una ridotta attività della timidina chinasi mitocondriale. Nella seconda parte mi sono dedicata allo studio di un modello di cellule muscolari differenziate in coltura, per cercare di individuare che cosa rende il tessuto muscolare così vulnerabile all’inattivazione di TK2 e p53R2. Nel confronto di questi due modelli cellulari abbiamo mirato all’individuazione di elementi divergenti che potessero costituire punti di fragilità del muscolo rispetto a una deficienza genetica delle due proteine. In cellule proliferanti la deficienza della TK2 o di p53R2 è ininfluente per il mantenimento del pool mitocondriale del dTTP, prodotto principalmente nel citosol attraverso l’attività di R1/R2 e della TK1. Di conseguenza ho eseguito tutti gli esperimenti in colture quiescenti o differenziate, in cui il mantenimento del pool del dTTP è garantito dall’attività della TK2 e della via de novo catalizzata da R1/p53R2. Nei fibroblasti la quiescenza è stata indotta in colture confluenti riducendo la percentuale di siero nel mezzo di coltura dal 10% allo 0.1% e mantenendo le cellule in condizioni quiescenti per 10 giorni, prima di eseguire gli esperimenti. Ho studiato colture quiescenti di due linee di fibroblasti di pelle provenienti da pazienti (Pa e Pb), genotipicamente distinti, portatori di mutazioni in eterozigosi nel gene della TK2 (T77M/R161K e R152G/ K171del). Le due linee di pazienti sono state confrontate con due linee di fibroblasti di controllo (Ca e Cb) provenienti da biopsie di soggetti sani di età corrispondente. Ho misurato l’attività enzimatica della TK2 negli estratti cellulari. Le cellule dei pazienti mostrano una notevole riduzione di attività TK2, gli estratti Pa hanno un’attività TK2 più bassa (circa il 5% dei controlli) rispetto agli estratti Pb (circa il 40% dei controlli). Tuttavia a questa riduzione di attività enzimatica della TK2 non corrisponde uno sbilanciamento dei pool dei dNTP: le dimensioni dei pool citosolici e mitocondriali del dTTP sono paragonabili a quelle dei controlli e anche la composizione dei pool dei quattro dNTP non subisce modificazioni. Ricercando possibili meccanismi che potessero compensare la deficienza della TK2 nelle linee mutanti, ho misurato le attività enzimatiche della timidina fosforilasi e delle deossinucleotidasi e l’espressione delle tre subunità della RNR, valutata a livello di mRNA mediante real-time PCR e a livello proteico mediante western blot. Nelle linee mutate non ho ritrovato meccanismi di adattamento metabolico quali una riduzione delle vie cataboliche o una maggior dipendenza dalla via de novo di R1/p53R2. Confrontando le dinamiche del pool del dTTP nei mutanti e nei controlli, in esperimenti di marcatura con timidina triziata, ho osservato che nonostante la ridotta attività TK2 i mutanti fosforilano il precursore con la stessa efficienza dei controlli. Dall’analisi del turnover del dTTP, attraverso esperimenti di pulse-chase, risulta che le cellule di controllo sintetizzano il dTTP in situ con la stessa efficienza delle cellule mutate, ad un tasso 10 volte inferiore a quello misurato nei saggi enzimatici eseguiti negli estratti proteici. L’espressione della TK2 aumenta in fibroblasti di pelle wild-type quiescenti (Rampazzo et al., 2007), ma l’enzima sembra lavorare a livelli inferiori alle sue potenzialità. Dai risultati ottenuti in questo mio lavoro, una piccola percentuale dell’attività potenziale della TK2 sembra venga effettivamente utilizzata per mantenere il pool del dTTP nei fibroblasti wild-type. Nelle cellule mutanti, invece, i tassi di fosforilazione in vitro (in estratti proteici) e in situ (in colture cellulari) non differiscono. Si potrebbe pensare che queste cellule siano in grado di mantenere adeguati livelli del pool del dTTP sfruttando completamente la loro attività TK2 residua. Ciò spiegherebbe l’assenza di deplezione del mtDNA riscontrata in queste linee mutate (Frangini et al., 2009). Nella linea di mioblasti murini C2C12 si può indurre il differenziamento sostituendo il terreno di coltura con un mezzo al 2% di siero di cavallo (terreno di differenziamento) : i mioblasti diventano miociti post-mitotici e si fondono in sincizi multinucleati detti miotubi, che esibiscono attività contrattile. Tuttavia, colture differenziate di C2C12 contengono una frazione significativa di cellule mononucleate, in cui la quantità di dNTP e l’assetto enzimatico differiscono rispetto ai miotubi differenziati. Ho quindi messo a punto un protocollo che permette di separare la frazione di miotubi da quella di mioblasti a partire da una coltura differenziata. La purezza delle frazioni è stata valutata misurando l’attività enzimatica della TK1 (marcatore di cellule proliferanti) e l’espressione di proteine muscolo-specifiche, la miogenina e la miosina, da cui si può stimare il grado di differenziamento. Grazie a questo protocollo di purificazione sono riuscita ad ottenere una frazione di miotubi differenziati in cui la presenza di cellule mononucleate non fuse è minimizzata. Ho quindi svolto una caratterizzazione dei miotubi misurando l’espressione degli enzimi coinvolti nelle vie biosintetiche dei deossinucleotidi, l’attività enzimatica degli enzimi della sintesi di recupero del dTTP e la composizione dei pool cellulari totali dei quattro dNTP. Ho preso in esame in particolare le modificazioni che si instaurano con il differenziamento dei mioblasti in miotubi, alla ricerca di eventuali differenze rispetto a quanto già osservato in fibroblasti di pelle al passaggio dalla proliferazione alla quiescenza. La differenza che spicca maggiormente da questo confronto è la presenza di un’attività molto bassa della TK2, che non aumenta con il differenziamento (nei fibroblasti che entrano in quiescenza aumenta invece di circa 3 volte). Dal confronto del modello mioblasti/miotubi con il muscolo scheletrico, effettuato in collaborazione con un altro laboratorio mediante analisi di microarray, è emersa una stretta similarità tra i profili di espressione dei geni del metabolismo dei dNTP nei miotubi e nel muscolo. Abbiamo quindi deciso usare questo modello cellulare per simulare in vitro le MDS miopatiche correlate a mutazioni di p53R2 e della TK2. Ho messo a punto un protocollo di trasfezione con siRNA Stealth (Invitrogen) che combinasse trasfezione e differenziamento ottenendo un silenziamento dell’80-90% per p53R2 e del 60-70% per la TK2. Nelle C2C12 in coltura il differenziamento determina un’espansione del numero di copie del mDNA di circa 7-8 volte rispetto ai mioblasti proliferanti, in conseguenza della stimolazione della biogenesi mitocondriale che accompagna la miogenesi. La quantificazione del mtDNA mediante real-time PCR quantitativa nei miotubi silenziati per la TK2 mostra una deplezione di circa il 50% a soli 4 giorni di differenziamento; quando è p53R2 ad essere silenziata, gli effetti sul mtDNA iniziano a manifestarsi all’ottavo giorno di differenziamento. Una differenza temporale nella manifestazione fenotipica è stata osservata anche tra i topi TK2-/- (Zhou et al., 2008; Akman et al., 2008) e p53R2-/- (Kimura et al., 2003), i primi iniziano a mostrare sintomi a 7 giorni dalla nascita, mentre i secondi a 8 settimane. Da questi esperimenti preliminari di silenziamento possiamo affermare di aver ottenuto un modello cellulare per le MDS miopatiche in cui si osserva deplezione del mtDNA. Non emergono indicazioni a favore di un meccanismo di compensazione trascrizionale per la deficienza di p53R2 e TK2 nell’espressione dei geni del metabolismo dei dNTP. Le prime determinazioni dei pool dei dNTP nelle colture silenziate non ci hanno permesso finora di chiarire le basi molecolari del fenotipo osservato. Gli esperimenti andranno sicuramente ripetuti. In particolare il procedimento della trasfezione determina una riduzione dell’efficienza di purificazione dei miotubi trasfettati, minando la riproducibilità dei risultati tra esperimenti diversi. Sarà necessario introdurre dei miglioramenti nella preparazione dei campioni per l’estrazione dei pool nucleotidici dalle cellule trasfettate per avere una determinazione più affidabile del loro contenuto di dNTP. Prevediamo che ulteriori indagini ci consentiranno di chiarire meglio il fenotipo di questi silenziamenti e di mettere in luce le relazioni tra la deplezione o la mancata espansione del mtDNA durante il differenziamento e la carenza di precursori.
31-gen-2011
Italiano
MDS, TK2, p53R2, mtDNA, fibrobasti di pelle, C2C12, mioblasti, siRNA, skin fibroblasts, mioblasts, quiescence, quiescenza
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
TesiDottorato_online.pdf

accesso aperto

Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110236
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110236