Questa tesi di dottorato tratta alcune applicazioni dei metodi di estrapolazione. Spesso in analisi numerica e nella matematica applicata si devono trattare successioni che convergono lentamente al loro limite. I metodi di estrapolazione possono essere utilizzati per accelerare la convergenza di una successione che converge lentamente o anche per sommare serie divergenti. I primi due capitoli della tesi sono dedicati alle trasformazioni di successioni scalari. Viene ripreso il Δ2 di Aitken e vengono proposte tre nuove trasformazioni che lo generalizzano. Le proprietà di convergenza e di accelerazione di una delle trasformazioni sono discusse teoricamente e verificate sperimentalmente usando delle successioni divergenti e convergenti. La trasformazione di Shanks e l'ε-algorithm di Wynn sono accuratamente studiati; vengono richiamate le regole particolari proposte da Wynn per il trattamento delle singolarità isolate, ovvero quando due elementi consecutivi sono uguali o quasi uguali, ed anche le regole particolari, più generali, proposte da Cordellier, per il trattamento delle singolarità non isolate, ovvero quando più di due elementi sono uguali. Viene proposta una nuova generale implementazione delle regole particolari in modo da poter trattare tutti i casi possibili, ossia la presenza di singolarità causata da due o più elementi che sono uguali o quasi uguali. Nella parte rimanente della tesi ci si concentra sull'estrapolazione vettoriale. Prima vengono brevemente descritti l'ε-algorithm vettoriale, l'ε-algorithm topologico e la sua versione semplificata, recentemente introdotta da Brezinski e Redivo-Zaglia. Successivamente, vengono presentate, con una notazione unificata le Algebraic Reconstruction Techniques (ART), le Simultaneous Iterative Reconstruction Techniques (SIRT) e altri metodi iterativi di regolarizzazione, che sono comunemente utilizzati per risolvere problemi inversi lineari. Infine, vengono illustrati i vantaggi ottenuti applicando l'estrapolazione ai precedenti metodi iterativi, utilizzati su problemi relativi alle immagini. In particolare, viene utilizzato il simplified topological ε-algorithm al fine di estrapolare una successione generata da metodi di tipo Landweber e Cimmino quando si risolvono problemi di ricostruzione e di restauro di immagini. I risultati numerici mostrano un buon comportamento dei metodi accelerati rispetto alle loro versioni non accelerate ed anche rispetto ad altri metodi.

Extrapolation methods and their applications in numerical analysis and applied mathematics

KARAPIPERI, ANNA
2016

Abstract

Questa tesi di dottorato tratta alcune applicazioni dei metodi di estrapolazione. Spesso in analisi numerica e nella matematica applicata si devono trattare successioni che convergono lentamente al loro limite. I metodi di estrapolazione possono essere utilizzati per accelerare la convergenza di una successione che converge lentamente o anche per sommare serie divergenti. I primi due capitoli della tesi sono dedicati alle trasformazioni di successioni scalari. Viene ripreso il Δ2 di Aitken e vengono proposte tre nuove trasformazioni che lo generalizzano. Le proprietà di convergenza e di accelerazione di una delle trasformazioni sono discusse teoricamente e verificate sperimentalmente usando delle successioni divergenti e convergenti. La trasformazione di Shanks e l'ε-algorithm di Wynn sono accuratamente studiati; vengono richiamate le regole particolari proposte da Wynn per il trattamento delle singolarità isolate, ovvero quando due elementi consecutivi sono uguali o quasi uguali, ed anche le regole particolari, più generali, proposte da Cordellier, per il trattamento delle singolarità non isolate, ovvero quando più di due elementi sono uguali. Viene proposta una nuova generale implementazione delle regole particolari in modo da poter trattare tutti i casi possibili, ossia la presenza di singolarità causata da due o più elementi che sono uguali o quasi uguali. Nella parte rimanente della tesi ci si concentra sull'estrapolazione vettoriale. Prima vengono brevemente descritti l'ε-algorithm vettoriale, l'ε-algorithm topologico e la sua versione semplificata, recentemente introdotta da Brezinski e Redivo-Zaglia. Successivamente, vengono presentate, con una notazione unificata le Algebraic Reconstruction Techniques (ART), le Simultaneous Iterative Reconstruction Techniques (SIRT) e altri metodi iterativi di regolarizzazione, che sono comunemente utilizzati per risolvere problemi inversi lineari. Infine, vengono illustrati i vantaggi ottenuti applicando l'estrapolazione ai precedenti metodi iterativi, utilizzati su problemi relativi alle immagini. In particolare, viene utilizzato il simplified topological ε-algorithm al fine di estrapolare una successione generata da metodi di tipo Landweber e Cimmino quando si risolvono problemi di ricostruzione e di restauro di immagini. I risultati numerici mostrano un buon comportamento dei metodi accelerati rispetto alle loro versioni non accelerate ed anche rispetto ad altri metodi.
28-gen-2016
Inglese
metodi di estrapolazione / extrapolation methods, accelerazione di convergenza / convergence acceleration, processo di Aitken / Aitken's process, epsilon-algorithm / epsilon-algorithm, regole particolari / particular rules, epsilon-algorithm topologico / topological epsilon-algorithm, metodi iterativi / iterative methods, ricostruzione e restauro di immagini / image reconstruction and restoration
SORAVIA, PIERPAOLO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
karapiperi_anna_tesi.pdf

accesso aperto

Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110288
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110288