Tecniche efficaci nello studio della dinamica molecolare sono le spettroscopie di risonanza elettronica e nucleare, essendo particolarmente sensibili a moti caratterizzati da scale dei tempi nell'intervallo da 10^-9 a 10^-6 s, nel quale rientrano sia i moti globali (di corpo rigido), sia le dinamiche interne di molecole in soluzione. E' da notare che questa finestra comprende anche la dinamica delle proteine, responsabile di proprieta' chimico-fisiche molto importanti, quali il riconoscimento del substrato, l'attivita' ed il folding. Tipicamente, in un esperimento di risonanza di spin elettronico (RSE) i moti molecolari sono responsabili dell'allargamento inomogeneo delle righe spettrali. Per quanto riguarda la risonanza magnetica nucleare (RMN), invece, la dinamica molecolare influisce sui rilassamenti T1, T2 e NOE. Lo scopo di questo lavoro e' l'implementazione di metodologie integrate teorico / computazionali per la caratterizzazione della dinamica molecolare a partire da misure RSE e RMN. In particolare, si proiettano i moti non importanti (''time coarse-graining''), ottenendo modelli per la dinamica relativamente semplici, che descrivono esclusivamente i moti rilevanti rispetto all'osservabile fisico in esame. In particolare, si impiegano modelli stocastici nei quali intervengono anche parametri strutturali che devono essere calcolati. Questi ultimi sono descritti a livello atomistico e / o mesoscopico in base alla loro natura. Sono stati sviluppati tre nuovi programmi: E-SpiReS (Electron Spin Resonance Simulation) per la simulazione di spettri RSE in onda continua, C++OPPS (COupled Protein Probe Smoluchowski) per simulazioni di misure di RMN e DITE (DIffusion TEnsor) per il calcolo di proprieta' dissipative di molecole con gradi di liberta' interni. Nell'implementazione dei programmi si e' fatto attenzione alla semplicita' d'uso, occupandosi anche dello sviluppo di interfacce grafiche, con l'obiettivo di affiancare i programmi alla strumentazione di laboratorio, come una sorta di estensione ''in silico'' della stessa.

Advanced computational tools for the interpretation of magnetic resonance spectroscopies

ZERBETTO, MIRCO
2009

Abstract

Tecniche efficaci nello studio della dinamica molecolare sono le spettroscopie di risonanza elettronica e nucleare, essendo particolarmente sensibili a moti caratterizzati da scale dei tempi nell'intervallo da 10^-9 a 10^-6 s, nel quale rientrano sia i moti globali (di corpo rigido), sia le dinamiche interne di molecole in soluzione. E' da notare che questa finestra comprende anche la dinamica delle proteine, responsabile di proprieta' chimico-fisiche molto importanti, quali il riconoscimento del substrato, l'attivita' ed il folding. Tipicamente, in un esperimento di risonanza di spin elettronico (RSE) i moti molecolari sono responsabili dell'allargamento inomogeneo delle righe spettrali. Per quanto riguarda la risonanza magnetica nucleare (RMN), invece, la dinamica molecolare influisce sui rilassamenti T1, T2 e NOE. Lo scopo di questo lavoro e' l'implementazione di metodologie integrate teorico / computazionali per la caratterizzazione della dinamica molecolare a partire da misure RSE e RMN. In particolare, si proiettano i moti non importanti (''time coarse-graining''), ottenendo modelli per la dinamica relativamente semplici, che descrivono esclusivamente i moti rilevanti rispetto all'osservabile fisico in esame. In particolare, si impiegano modelli stocastici nei quali intervengono anche parametri strutturali che devono essere calcolati. Questi ultimi sono descritti a livello atomistico e / o mesoscopico in base alla loro natura. Sono stati sviluppati tre nuovi programmi: E-SpiReS (Electron Spin Resonance Simulation) per la simulazione di spettri RSE in onda continua, C++OPPS (COupled Protein Probe Smoluchowski) per simulazioni di misure di RMN e DITE (DIffusion TEnsor) per il calcolo di proprieta' dissipative di molecole con gradi di liberta' interni. Nell'implementazione dei programmi si e' fatto attenzione alla semplicita' d'uso, occupandosi anche dello sviluppo di interfacce grafiche, con l'obiettivo di affiancare i programmi alla strumentazione di laboratorio, come una sorta di estensione ''in silico'' della stessa.
2-feb-2009
Inglese
stochastic modelling, electron spin resonance, nuclear magnetic resonance, stochastic liouville equation, slowly relaxing local structure, diffusion tensor, friction tensor, dissipative properties, flexible molecules, integrated computational approach, e-spires, c++opps, dite
Università degli studi di Padova
261
File in questo prodotto:
File Dimensione Formato  
tesi.pdf

accesso aperto

Dimensione 20.44 MB
Formato Adobe PDF
20.44 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110374
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110374