Le proprietà della variabilità temporale nelle sorgenti astrofisiche sono di notevole interesse e riguardano una vasta gamma di fenomeni che si sviluppano in diversi tipi di oggetti. In questa tesi di dottorato abbiamo investigato due classi di fenomei astrofisici, entrambi legati a studi sulla varabilità temporale. La tesi presenta l'analisi scientifica dei dati raccolti dalla Crab pulsar con gli innovativi contatori di fotoni ottici Aqueye e Iqueye, la cui risoluzione temporale è la più alta mai raggiunta nel dominio ottico (centinaia di picosecondi). Aqueye (Barbieri et al. 2008, 2009) è stato progettato per essere montato al telescopio Copernico in Asiago. Iqueye (Naletto et al. 2009, 2010) è una versione innovativa e progettato per il telescopio NTT in La Silla. Altre investigazioni qui descritte riguardano lo sviluppo e la verifica di idee per interpretare e modellizzare la variabilità temporale al millisecondo osservata in sistemi binari X. Per quanto riguarda l'analisi scientifica dei dati dalla Crab pulsar, essa richiede che ai fotoni raccolti venga associato, con alta precisione, il rispettivo tempo di arrivo secondo un osservatore inerziale. Quindi dobbiamo riferire il tempo di arrivo dei fotoni (TOAs) ad un sistema di riferimento che approssimi al meglio uno inerziale. Solitamente i TOAs all'osservatorio vengono trasformati in TOAs misurati da un osservatore al baricentro del sistema solare. Tempo2 (Hobbs et al. 2006, Edwards et al. 2006) è un software sviluppato per modelizzare con estrema precisione (1 ns) i TOAs misurati in un sistema di riferimento inerziale. Dopo aver baricentrizzato i TOAs, abbiamo usato un codice numerico per calcolare la fase della Crab pulsar. Dallo studio dell'andamento della fase nel tempo è possibile misurare il periodo di rotazione della stella di neutroni e sue derivate. L'analisi dei residui in fase rispetto al modello standard può rivelare peculiarità della sorgente e dell'ambiente circostante. Con questo tipo di analisi e' possibile anche verificare la bontà del modello che corregge i tempi di arrivo al baricentro del sistema solare. Se c'è qualche discrepanza inaspettata allora è interessante investigare sulla sua origine fisica. Un risultato importante ottenuto dall'analisi dei residui in fase è stata la scoperta del primo sistema planetario extrasolare attorno alla pulsar PSR B1257+12 ( Wolszczan & Frail 1992; Wolszczan 1994; Konacki & Wolszczan 2003). Altri studi riguardano verifiche della teoria della Relatività Generale (Helfand et al. 1980; Kramer et al. 2006). Inoltre, il timing delle pulsars è stato proposto come potenziale strumento per la rivelazione di onde gravitazionali (Stappers et al. 2006; Manchester 2010). Dall'analisi dei residui in fase sono state notate inaccuratezze nel ricostruire i TOAs al baricentro del sistema solare, dovute a problemi con i files di configurazione del software Tempo2. Una volta risolti questi problemi, possiamo concludere che i periodi di rotazione della Crab pulsar misurati con Aqueye/Iqueye sono in accordo entro qualche picosecondo con quelli riportati nell'archivio radio del Jodrell Bank Observatory. I TOAs dei fotoni generano una componente di rumore che segue la statistica di Poisson. Le differenze tra i periodi radio e ottici sono maggiori dell'errore Poissoniano stimato. Con i dati raccolti da Aqueye/Iqueye e' stato possibile misurare la derivata prima del periodo di rotazione gia' con osservazioni su una base temporale di soli 2 giorni. Anche in questo caso abbiamo notato discrepanze maggiori dell'errore statistico. Misurando il tempo di arrivo del picco ottico al baricentro del sistema solare e confrontandolo con quello riportato nell'archivio radio, è stato ricavato il ritardo temporale del picco radio rispetto a quello ottico. Il picco ottico arriva circa 120 microsec in anticipo rispetto a quello radio, in accordo con altri osservatori (Shearer et al. 2003; Oosterbroek et al. 2008) . L'analisi ha anche rivelato un deriva della fase ottica rispetto a quella radio che sembra essere legata alle discrepanze gia' menzionate tra i periodi di rotazione. Ulteriori investigazioni hanno portato alla preliminare conclusione che il segnale ottico dalla Crab pulsar potrebbe essere influenzato da una componente di rumore che non segue la statistica di Poisson, conosciuto come timing noise. Rumore non Poissoniano nel segnale da stelle di neutroni è stato rivelato da diversi autori (Boynton et al. 1972; Lyne et al. 1993; Scott et al. 2003; Hobbs et al. 2006b; Patruno et al. 2009), comunque su basi temporali di mesi o anni. Ulteriori osservazioni sono necessarie per verificare la presenza di rumore non Poissoniano su scale di giorni. In questa tesi di dottorato è stata anche esplorata qualche idea sulla interpretazione e modelizzazione della variabilità temporale al millisecondo, osservata nel flusso X delle Low Mass X-ray Binaries (LMXBs; van der Klis 2004). Queste oscillazioni quasi-periodiche (QPOs), a frequenze fino a 1200 Hz, sono state rivelate con i contatori di fotoni X a bordo del satellite Rossi X-ray Timing Explorer (RXTE; Bradt et al. 1993) Oscillazioni al millisecondo sono tipiche del tempo scala orbitale a distanze prossime all'oggetto compatto. Lo studio temporale di queste sorgenti potrebbe essere un modo indiretto per studiare il moto della materia in uno spazio-tempo fortemente curvato, quindi per verificare la teoria della Relatività Generale in regime di campo forte. La tesi descrive qualche idea per interpolare le frequenze dei moti relativistici, calcolate per orbite nella metrica di Kerr, con i QPOs osservati nelle LMXBs. Abbiamo calcolato il chi-quadro ridotto (χ2/dof) su una griglia di masse e momenti angolari e notato che il minimo χ2/dof si ottiene per masse della stella di neutroni maggiori di 2 M⊙. Questi valori sono grandi rispetto alla usuale massa di una stella di neutroni (1.4M⊙) ottenuta dalle pulsar binarie. Comunque, in sistemi binari in accrescimento come le LMXBs, è stata misurata una massa della stella di neutroni maggiore di quella tipica (Casares et al. 2006, 2010). Va precisato che, utilizzare i QPOs al millisecondo per ottenere stime precise della massa di una stella di neutroni potrebbe non essere ancora un metodo sicuro, vista la complessità della fenomenologia e le tuttora poco chiare proprietà. Se i QPOs ad alta frequenza nel flusso X delle LMXBs sono prodotti da corpi che orbitano in prossimità dell'oggetto compatto, allora un modello consistente dovrebbe prendere in cosiderazione anche l'evoluzione della loro forma in uno spazio-tempo curvo. In collaborazione con il Dipartimento di Fisica e di Matematica dell'Università di Ljubljana abbiamo simulato curve di luce e spettri di potenza prodotti da un oggetto costituito da particelle libere orbitanti un buco nero di Schwarschild. Durante il moto orbitale la forma dell'oggetto è fortemente alterata dall'intensa forza mareale del buco nero (Cadez et al. 2008, Kostic et al. 2009). Tali simulazioni numeriche sono in grado di riprodurre lo spettro di potenza osservato nella LMXB con un buco nero XTE J1550-564 (Germanà et al. 2009).

Timing studies of compact objects

GERMANA', CLAUDIO
2011

Abstract

Le proprietà della variabilità temporale nelle sorgenti astrofisiche sono di notevole interesse e riguardano una vasta gamma di fenomeni che si sviluppano in diversi tipi di oggetti. In questa tesi di dottorato abbiamo investigato due classi di fenomei astrofisici, entrambi legati a studi sulla varabilità temporale. La tesi presenta l'analisi scientifica dei dati raccolti dalla Crab pulsar con gli innovativi contatori di fotoni ottici Aqueye e Iqueye, la cui risoluzione temporale è la più alta mai raggiunta nel dominio ottico (centinaia di picosecondi). Aqueye (Barbieri et al. 2008, 2009) è stato progettato per essere montato al telescopio Copernico in Asiago. Iqueye (Naletto et al. 2009, 2010) è una versione innovativa e progettato per il telescopio NTT in La Silla. Altre investigazioni qui descritte riguardano lo sviluppo e la verifica di idee per interpretare e modellizzare la variabilità temporale al millisecondo osservata in sistemi binari X. Per quanto riguarda l'analisi scientifica dei dati dalla Crab pulsar, essa richiede che ai fotoni raccolti venga associato, con alta precisione, il rispettivo tempo di arrivo secondo un osservatore inerziale. Quindi dobbiamo riferire il tempo di arrivo dei fotoni (TOAs) ad un sistema di riferimento che approssimi al meglio uno inerziale. Solitamente i TOAs all'osservatorio vengono trasformati in TOAs misurati da un osservatore al baricentro del sistema solare. Tempo2 (Hobbs et al. 2006, Edwards et al. 2006) è un software sviluppato per modelizzare con estrema precisione (1 ns) i TOAs misurati in un sistema di riferimento inerziale. Dopo aver baricentrizzato i TOAs, abbiamo usato un codice numerico per calcolare la fase della Crab pulsar. Dallo studio dell'andamento della fase nel tempo è possibile misurare il periodo di rotazione della stella di neutroni e sue derivate. L'analisi dei residui in fase rispetto al modello standard può rivelare peculiarità della sorgente e dell'ambiente circostante. Con questo tipo di analisi e' possibile anche verificare la bontà del modello che corregge i tempi di arrivo al baricentro del sistema solare. Se c'è qualche discrepanza inaspettata allora è interessante investigare sulla sua origine fisica. Un risultato importante ottenuto dall'analisi dei residui in fase è stata la scoperta del primo sistema planetario extrasolare attorno alla pulsar PSR B1257+12 ( Wolszczan & Frail 1992; Wolszczan 1994; Konacki & Wolszczan 2003). Altri studi riguardano verifiche della teoria della Relatività Generale (Helfand et al. 1980; Kramer et al. 2006). Inoltre, il timing delle pulsars è stato proposto come potenziale strumento per la rivelazione di onde gravitazionali (Stappers et al. 2006; Manchester 2010). Dall'analisi dei residui in fase sono state notate inaccuratezze nel ricostruire i TOAs al baricentro del sistema solare, dovute a problemi con i files di configurazione del software Tempo2. Una volta risolti questi problemi, possiamo concludere che i periodi di rotazione della Crab pulsar misurati con Aqueye/Iqueye sono in accordo entro qualche picosecondo con quelli riportati nell'archivio radio del Jodrell Bank Observatory. I TOAs dei fotoni generano una componente di rumore che segue la statistica di Poisson. Le differenze tra i periodi radio e ottici sono maggiori dell'errore Poissoniano stimato. Con i dati raccolti da Aqueye/Iqueye e' stato possibile misurare la derivata prima del periodo di rotazione gia' con osservazioni su una base temporale di soli 2 giorni. Anche in questo caso abbiamo notato discrepanze maggiori dell'errore statistico. Misurando il tempo di arrivo del picco ottico al baricentro del sistema solare e confrontandolo con quello riportato nell'archivio radio, è stato ricavato il ritardo temporale del picco radio rispetto a quello ottico. Il picco ottico arriva circa 120 microsec in anticipo rispetto a quello radio, in accordo con altri osservatori (Shearer et al. 2003; Oosterbroek et al. 2008) . L'analisi ha anche rivelato un deriva della fase ottica rispetto a quella radio che sembra essere legata alle discrepanze gia' menzionate tra i periodi di rotazione. Ulteriori investigazioni hanno portato alla preliminare conclusione che il segnale ottico dalla Crab pulsar potrebbe essere influenzato da una componente di rumore che non segue la statistica di Poisson, conosciuto come timing noise. Rumore non Poissoniano nel segnale da stelle di neutroni è stato rivelato da diversi autori (Boynton et al. 1972; Lyne et al. 1993; Scott et al. 2003; Hobbs et al. 2006b; Patruno et al. 2009), comunque su basi temporali di mesi o anni. Ulteriori osservazioni sono necessarie per verificare la presenza di rumore non Poissoniano su scale di giorni. In questa tesi di dottorato è stata anche esplorata qualche idea sulla interpretazione e modelizzazione della variabilità temporale al millisecondo, osservata nel flusso X delle Low Mass X-ray Binaries (LMXBs; van der Klis 2004). Queste oscillazioni quasi-periodiche (QPOs), a frequenze fino a 1200 Hz, sono state rivelate con i contatori di fotoni X a bordo del satellite Rossi X-ray Timing Explorer (RXTE; Bradt et al. 1993) Oscillazioni al millisecondo sono tipiche del tempo scala orbitale a distanze prossime all'oggetto compatto. Lo studio temporale di queste sorgenti potrebbe essere un modo indiretto per studiare il moto della materia in uno spazio-tempo fortemente curvato, quindi per verificare la teoria della Relatività Generale in regime di campo forte. La tesi descrive qualche idea per interpolare le frequenze dei moti relativistici, calcolate per orbite nella metrica di Kerr, con i QPOs osservati nelle LMXBs. Abbiamo calcolato il chi-quadro ridotto (χ2/dof) su una griglia di masse e momenti angolari e notato che il minimo χ2/dof si ottiene per masse della stella di neutroni maggiori di 2 M⊙. Questi valori sono grandi rispetto alla usuale massa di una stella di neutroni (1.4M⊙) ottenuta dalle pulsar binarie. Comunque, in sistemi binari in accrescimento come le LMXBs, è stata misurata una massa della stella di neutroni maggiore di quella tipica (Casares et al. 2006, 2010). Va precisato che, utilizzare i QPOs al millisecondo per ottenere stime precise della massa di una stella di neutroni potrebbe non essere ancora un metodo sicuro, vista la complessità della fenomenologia e le tuttora poco chiare proprietà. Se i QPOs ad alta frequenza nel flusso X delle LMXBs sono prodotti da corpi che orbitano in prossimità dell'oggetto compatto, allora un modello consistente dovrebbe prendere in cosiderazione anche l'evoluzione della loro forma in uno spazio-tempo curvo. In collaborazione con il Dipartimento di Fisica e di Matematica dell'Università di Ljubljana abbiamo simulato curve di luce e spettri di potenza prodotti da un oggetto costituito da particelle libere orbitanti un buco nero di Schwarschild. Durante il moto orbitale la forma dell'oggetto è fortemente alterata dall'intensa forza mareale del buco nero (Cadez et al. 2008, Kostic et al. 2009). Tali simulazioni numeriche sono in grado di riprodurre lo spettro di potenza osservato nella LMXB con un buco nero XTE J1550-564 (Germanà et al. 2009).
28-gen-2011
Inglese
pulsar, fotometria veloce, binarie X, fisica dei buchi neri pulsar, fast-photometry, X-ray binaries, black hole physics
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
tesiDottGermana.pdf

accesso aperto

Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110415
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110415