La regolazione della glicemia in soggetti sani, si basa su un complesso sistema di controllo che permette di mantenere il livello di glucosio nel sangue all’interno di un range ristretto che oscilla attorno al suo valore basale. Il mal funzionamento di tale sistema è la causa di patologie metaboliche, ad esempio il diabete. Questa patologia è caratterizzata da iperglicemia cronica che, se non curata, a lungo termine comporta gravi complicanze micro e marco vascolari. Il diabete è comunemente classificato in tipo 1 e tipo 2. Entrambi derivano da complesse interazioni tra ambente e geni, e sono caratterizzati da una totale mancanza di produzione di insulina, nel tipo 1, o da una carenza da parte del pancreas nel produrre insulina in quantità sufficiente per soddisfare le necessità dell’organismo, nel tipo 2. La prevalenza del diabete è in costante aumento in tutto il mondo, così come la sua incidenza è in costante crescita negli ultimi anni. I farmaci tradizionali per la terapia del diabete di tipo 2, come l’insulina, sulfaniluree, metformina e tiazolidinedioni, riducono la glicemia attraverso diversi meccanismi di azione. Tuttavia, molti degli agenti ipoglicemizzanti assunti per via orale, perdono di efficacia con il tempo causando un progressivo deterioramento della funzionalità e riduzione della massa delle β-cellule con conseguente riduzione del controllo glicemico. Di conseguenza vi è un crescente interesse nello sviluppo di nuovi agenti terapeutici che preservino la massa e ripristino la funzionalità delle β-cellule. Uno di questi è l’ormone Glucagon-Like Peptide-1 (GLP-1), che non solo riduce la glicemia aumentando la secrezione di insulina, ma agisce anche nel signaling nelle isole di Langherans stimolando la proliferazione e la neo-genesi delle β-cellule e inibendone l’apoptosi. La ridotta secrezione di insulina e la mancata soppressione del glucagone inducono ad ipotizzare che la diminuita risposata delle β-cellule al GLP-1 possa essere parte della patogenesi del diabete di tipo 2. Pertanto la capacità di misurare l’effetto del GLP-1 sulla secrezione dell’insulina è utile per studiare la patogenesi della malattia ed ottimizzare valutare l’efficacia delle terapie basate sul GLP-1. Infatti è cruciale determinare quali soggetti possono beneficiare maggiormente di tale terapia per ottimizzare le risorse. Tuttavia, non è ancora disponibile un modello che descriva l’azione del GLP-1 sulla secrezione di insulina e permetta di quantificarne l’entità. In questo lavoro viene proposto un modello matematico che descrive i meccanismi di azione del GLP-1 sulla secrezione di insulina, fornendo una misura diretta dell’aumento della secrezione dell’insulina dovuto all’effetto del GLP-1. Sono stati utilizzati tre database per sviluppare, testare e validare i modelli proposti. I dati di 88 soggetti sani sottoposti ad un clamp iperglicemico con contemporanea infusione intravenosa di GLP-1, sono stati utilizzati per lo sviluppo del modello. Sono stati testati una serie di modelli dell’azione del GLP-1 sulla secrezione di insulina di complessità crescente. Tutti i modelli si basano sulla comune assunzione che la secrezione di insulina è costituita da due componenti, una proporzionale alla concentrazione ed una alla velocità di variazione del glucosio plasmatico, modulate rispettivamente dalla responsività statica Φs e dalla responsività dinamica Φd. Ogni modello differisce dagli altri nella descrizione della modalità di azione del GLP-1. Per ciascun modello è stato derivato un indice di potenziamento, П, che rappresenta l’aumento percentuale della secrezione di insulina dovuta ad 1 pmol/l di GLP-1. I modelli predicono bene i dati (infatti il run test conferma la casualità dei residui nel 70% dei soggetti) e forniscono stime precise dei parametri . La selezione del modello ottimo è stata affrontata confrontando le prestazioni dei modelli sulla base di criteri standard (capacità di descrivere i dati, la precisione della stima dei parametri, la parsimonia, la casualità dei residui). Il modello più parsimonioso ipotizza che la secrezione sopra basale di insulina dipenda linearmente sia dalla concentrazione di GLP-1 sia dalla sua variazione. Tuttavia le condizioni sperimentali di tale protocollo non sono fisiologiche e applicabili su larga scala. Pertanto, i dati di 22 soggetti IFG (Impaired Fasting Glucose), studiati due volte con un pasto misto, sono stati utilizzati per testare il modello in una condizione sperimentale più vicina alla fisiologia. I risultati dimostrano che per descrivere i dati di un test orale, è sufficiente un modello più semplice. La validazione del modello è stata effettuata sia in simulazione sia utilizzando i dati reali di 10 soggetti, studiati due volte: una prima volta utilizzando un test orale di tolleranza al glucosio (OGTT) e successivamente un test intravenoso di tolleranza al glucosio durante il quale il glucosio è stato infuso in modo tale da riprodurre la glicemia osservata durante l’OGTT. Questo protocollo permette di calcolare un indice di potenziamento (PI) modello-indipendente dal confronto tra la secrezione di insulina stimata nelle due occasioni. Il confronto tra il potenziamento stimato con il modello, П, e l’indice di potenziamento PI mostra che i due indici sono molto simili (П = 6.55, CV = 65%; PI = 6.15 % per pmol/l). Inoltre nel 93 ± 1% delle simulazioni effettuate il modello è in grado di quantificare correttamente l’effetto del GLP-1 sulla secrezione di insulina.

A model of beta-cell response to GLP-1 to quantify incretin effect in healthy and prediabetic subjects

MICHELETTO, FRANCESCO
2013

Abstract

La regolazione della glicemia in soggetti sani, si basa su un complesso sistema di controllo che permette di mantenere il livello di glucosio nel sangue all’interno di un range ristretto che oscilla attorno al suo valore basale. Il mal funzionamento di tale sistema è la causa di patologie metaboliche, ad esempio il diabete. Questa patologia è caratterizzata da iperglicemia cronica che, se non curata, a lungo termine comporta gravi complicanze micro e marco vascolari. Il diabete è comunemente classificato in tipo 1 e tipo 2. Entrambi derivano da complesse interazioni tra ambente e geni, e sono caratterizzati da una totale mancanza di produzione di insulina, nel tipo 1, o da una carenza da parte del pancreas nel produrre insulina in quantità sufficiente per soddisfare le necessità dell’organismo, nel tipo 2. La prevalenza del diabete è in costante aumento in tutto il mondo, così come la sua incidenza è in costante crescita negli ultimi anni. I farmaci tradizionali per la terapia del diabete di tipo 2, come l’insulina, sulfaniluree, metformina e tiazolidinedioni, riducono la glicemia attraverso diversi meccanismi di azione. Tuttavia, molti degli agenti ipoglicemizzanti assunti per via orale, perdono di efficacia con il tempo causando un progressivo deterioramento della funzionalità e riduzione della massa delle β-cellule con conseguente riduzione del controllo glicemico. Di conseguenza vi è un crescente interesse nello sviluppo di nuovi agenti terapeutici che preservino la massa e ripristino la funzionalità delle β-cellule. Uno di questi è l’ormone Glucagon-Like Peptide-1 (GLP-1), che non solo riduce la glicemia aumentando la secrezione di insulina, ma agisce anche nel signaling nelle isole di Langherans stimolando la proliferazione e la neo-genesi delle β-cellule e inibendone l’apoptosi. La ridotta secrezione di insulina e la mancata soppressione del glucagone inducono ad ipotizzare che la diminuita risposata delle β-cellule al GLP-1 possa essere parte della patogenesi del diabete di tipo 2. Pertanto la capacità di misurare l’effetto del GLP-1 sulla secrezione dell’insulina è utile per studiare la patogenesi della malattia ed ottimizzare valutare l’efficacia delle terapie basate sul GLP-1. Infatti è cruciale determinare quali soggetti possono beneficiare maggiormente di tale terapia per ottimizzare le risorse. Tuttavia, non è ancora disponibile un modello che descriva l’azione del GLP-1 sulla secrezione di insulina e permetta di quantificarne l’entità. In questo lavoro viene proposto un modello matematico che descrive i meccanismi di azione del GLP-1 sulla secrezione di insulina, fornendo una misura diretta dell’aumento della secrezione dell’insulina dovuto all’effetto del GLP-1. Sono stati utilizzati tre database per sviluppare, testare e validare i modelli proposti. I dati di 88 soggetti sani sottoposti ad un clamp iperglicemico con contemporanea infusione intravenosa di GLP-1, sono stati utilizzati per lo sviluppo del modello. Sono stati testati una serie di modelli dell’azione del GLP-1 sulla secrezione di insulina di complessità crescente. Tutti i modelli si basano sulla comune assunzione che la secrezione di insulina è costituita da due componenti, una proporzionale alla concentrazione ed una alla velocità di variazione del glucosio plasmatico, modulate rispettivamente dalla responsività statica Φs e dalla responsività dinamica Φd. Ogni modello differisce dagli altri nella descrizione della modalità di azione del GLP-1. Per ciascun modello è stato derivato un indice di potenziamento, П, che rappresenta l’aumento percentuale della secrezione di insulina dovuta ad 1 pmol/l di GLP-1. I modelli predicono bene i dati (infatti il run test conferma la casualità dei residui nel 70% dei soggetti) e forniscono stime precise dei parametri . La selezione del modello ottimo è stata affrontata confrontando le prestazioni dei modelli sulla base di criteri standard (capacità di descrivere i dati, la precisione della stima dei parametri, la parsimonia, la casualità dei residui). Il modello più parsimonioso ipotizza che la secrezione sopra basale di insulina dipenda linearmente sia dalla concentrazione di GLP-1 sia dalla sua variazione. Tuttavia le condizioni sperimentali di tale protocollo non sono fisiologiche e applicabili su larga scala. Pertanto, i dati di 22 soggetti IFG (Impaired Fasting Glucose), studiati due volte con un pasto misto, sono stati utilizzati per testare il modello in una condizione sperimentale più vicina alla fisiologia. I risultati dimostrano che per descrivere i dati di un test orale, è sufficiente un modello più semplice. La validazione del modello è stata effettuata sia in simulazione sia utilizzando i dati reali di 10 soggetti, studiati due volte: una prima volta utilizzando un test orale di tolleranza al glucosio (OGTT) e successivamente un test intravenoso di tolleranza al glucosio durante il quale il glucosio è stato infuso in modo tale da riprodurre la glicemia osservata durante l’OGTT. Questo protocollo permette di calcolare un indice di potenziamento (PI) modello-indipendente dal confronto tra la secrezione di insulina stimata nelle due occasioni. Il confronto tra il potenziamento stimato con il modello, П, e l’indice di potenziamento PI mostra che i due indici sono molto simili (П = 6.55, CV = 65%; PI = 6.15 % per pmol/l). Inoltre nel 93 ± 1% delle simulazioni effettuate il modello è in grado di quantificare correttamente l’effetto del GLP-1 sulla secrezione di insulina.
29-gen-2013
Inglese
GLP-1, secrezione di insulina, modello, beta-cellule, effetto incretina / GLP-1, insulin secretion, modeling, beta-cells, incretin effect.
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
micheletto_francesco_tesi.pdf

accesso aperto

Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110437
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110437