I deossinucleosidi trifosfato (dNTPs) sono i precursori della sintesi del DNA. Le loro concentrazioni devono essere bilanciate affinchè la replicazione del DNA nucleare e mitocondriale e la riparazione del DNA siano accurate. Le dimensioni dei pool e le loro proporzioni sono regolate da una rete di enzimi anabolici e catabolici che operano nel citosol e nei mitocondri. I pool citosolico e mitocondriale sono separati dalla membrana mitocondriale interna che costituisce una barriera impermeabile, ma molte sono le evidenze dell'esistenza di trasportatori mitocondriali per lo scambio di deossinucleotidi tra i due compartimenti. PNC1 è stato identificato come un trasportatore di nucleotidi pirimidinici dopo essere stato ricostituito in liposomi; il suo ruolo nell'importo di UTP nei mitocondri è stato confermato in cellule umane. L'enzima principale per la sintesi dei dNTPs è la ribonucleotide reduttasi (RNR) nel citosol. L'enzima produce i quattro precursori del DNA in quantità bilanciate attraverso un meccanismo di regolazione allosterico basato su due siti distinti che controllano l'attività catalitica e la specificità di substrato. I dNTPs possono essere sintetizzati anche attraverso la via di recupero che consiste nella fosforilazione di deossinucleosidi nel citosol e nei mitocondri. Gli enzimi catabolici degradano i deossinucleosidi monofosfato e i deossinucleosidi. SAMHD1 è un enzima catabolico scoperto recentemente; è una dNTP trifosfoidrolasi ed è in grado di degradare i quattro dNTPs se attivato in maniera allosterica dal dGTP. E' stato recentemente identificato come il fattore di restrizione di HIV-1 nelle cellule del sistema immunitario, ma il fatto che sia ampiamente espresso in molti tessuti umani suggerisce che svolga una funzione più generale. In questo lavoro abbiamo affrontato tre questioni principali: (i) il ruolo di PNC1 nel trasporto di nucleotidi della timidina, (ii) il meccanismo di regolazione allosterica di SAMHD1 e (iii) il suo ruolo nelle cellule umane. Dimostriamo che PNC1 media l'importo dei fosfati della timidina nei mitocondri e contemporaneamente il loro esporto verso il citosol, allo scopo di mantenere l'equilibrio dei pool citosolico e mitocondriale del dTTP. In cellule umane dimostriamo che l'espressione di SAMHD1 è regolata nel corso del ciclo cellulare, con un livello massimo al di fuori della fase S e un livello minimo nella fase di sintesi del DNA. Il suo ruolo è quello di mantere i pool dei dNTPs a basse concentrazioni in fase G1 per consentire l'entrata in S e la corretta progressione del ciclo cellulare. Attraverso la caratterizzazione biochimica della proteina, dimostriamo che la sua attività enzimatica è regolata in maniera complessa da due siti allosterici distinti. Proponiamo che un meccanismo di regolazione comune basato su proprietà allosteriche operi sulle due reazioni opposte catalizzate da RNR e SAMHD1 per determinare un pool bilanciato di precursori.
The role of deoxynucleotide trafficking and degradation in the maintenance of balanced pools of DNA precursors in mammalian cells
MIAZZI, CRISTINA
2014
Abstract
I deossinucleosidi trifosfato (dNTPs) sono i precursori della sintesi del DNA. Le loro concentrazioni devono essere bilanciate affinchè la replicazione del DNA nucleare e mitocondriale e la riparazione del DNA siano accurate. Le dimensioni dei pool e le loro proporzioni sono regolate da una rete di enzimi anabolici e catabolici che operano nel citosol e nei mitocondri. I pool citosolico e mitocondriale sono separati dalla membrana mitocondriale interna che costituisce una barriera impermeabile, ma molte sono le evidenze dell'esistenza di trasportatori mitocondriali per lo scambio di deossinucleotidi tra i due compartimenti. PNC1 è stato identificato come un trasportatore di nucleotidi pirimidinici dopo essere stato ricostituito in liposomi; il suo ruolo nell'importo di UTP nei mitocondri è stato confermato in cellule umane. L'enzima principale per la sintesi dei dNTPs è la ribonucleotide reduttasi (RNR) nel citosol. L'enzima produce i quattro precursori del DNA in quantità bilanciate attraverso un meccanismo di regolazione allosterico basato su due siti distinti che controllano l'attività catalitica e la specificità di substrato. I dNTPs possono essere sintetizzati anche attraverso la via di recupero che consiste nella fosforilazione di deossinucleosidi nel citosol e nei mitocondri. Gli enzimi catabolici degradano i deossinucleosidi monofosfato e i deossinucleosidi. SAMHD1 è un enzima catabolico scoperto recentemente; è una dNTP trifosfoidrolasi ed è in grado di degradare i quattro dNTPs se attivato in maniera allosterica dal dGTP. E' stato recentemente identificato come il fattore di restrizione di HIV-1 nelle cellule del sistema immunitario, ma il fatto che sia ampiamente espresso in molti tessuti umani suggerisce che svolga una funzione più generale. In questo lavoro abbiamo affrontato tre questioni principali: (i) il ruolo di PNC1 nel trasporto di nucleotidi della timidina, (ii) il meccanismo di regolazione allosterica di SAMHD1 e (iii) il suo ruolo nelle cellule umane. Dimostriamo che PNC1 media l'importo dei fosfati della timidina nei mitocondri e contemporaneamente il loro esporto verso il citosol, allo scopo di mantenere l'equilibrio dei pool citosolico e mitocondriale del dTTP. In cellule umane dimostriamo che l'espressione di SAMHD1 è regolata nel corso del ciclo cellulare, con un livello massimo al di fuori della fase S e un livello minimo nella fase di sintesi del DNA. Il suo ruolo è quello di mantere i pool dei dNTPs a basse concentrazioni in fase G1 per consentire l'entrata in S e la corretta progressione del ciclo cellulare. Attraverso la caratterizzazione biochimica della proteina, dimostriamo che la sua attività enzimatica è regolata in maniera complessa da due siti allosterici distinti. Proponiamo che un meccanismo di regolazione comune basato su proprietà allosteriche operi sulle due reazioni opposte catalizzate da RNR e SAMHD1 per determinare un pool bilanciato di precursori.File | Dimensione | Formato | |
---|---|---|---|
Cristina_Miazzi_tesi.pdf
accesso aperto
Dimensione
4.59 MB
Formato
Adobe PDF
|
4.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/110445
URN:NBN:IT:UNIPD-110445