Negli ultimi anni i dispositivi LED di potenza ad elevata luminosità (HBLED) hanno attirato in misura sempre crescente l'interesse della comunità scientifica, sia all'interno del mondo accademico che di quello industriale. Tra le varie caratteristiche, che rendono questo tipo di tecnologia interessante, le qualità più apprezzate sono certamente: la robustezza, l'elevata efficienza, le piccole dimensioni, la facilità di modulazione dell'intensità luminosa, il lungo tempo di vita, l'estrema rapidità di accensione e spegnimento e l'assenza di mercurio. Nonostante tutti questi aspetti sembrino dare alla tecnologia a stato solido un netto vantaggio rispetto alle tecnologie concorrenti, l'utilizzo dei LED di potenza nel campo dell'illuminazione rimane a tutt'oggi abbastanza limitato. La necessità di ulteriori progressi nella tecnologia dei dispositivi, da un lato, e dello sviluppo di soluzioni in grado di garantirne il corretto ed efficiente pilotaggio, dall'altro, ne hanno, infatti, fino ad ora frenato la diffusione rispetto alle attese. Quest'ultimo aspetto, in particolare, è al giorno d'oggi considerata il vero "collo di bottiglia" in vista dell'impiego su larga scala della tecnologia a stato solido, in sostituzione delle soluzioni, tutt'ora dominanti nel mercato dell'illuminazione, basate sull'utilizzo di lampade alogene e a fluorescenza. Se, da un lato, infatti, è vero che alcuni aspetti della tecnologia dei dispositivi (e.g. variabilità delle prestazioni con la temperatura, qualità della luce, calo dell'efficienza luminosa con l'aumentare della corrente, elevato costo per lumen, ecc...) necessitano di essere ulteriormente perfezionati, dall'altro è ormai universalmente riconosciuto che l'elemento chiave per l'ampia diffusione dell'illuminazione a stato solido è proprio l'ottimizzazione dello stadio di alimentazione. In particolare, le specifiche più importati che un ballast per lampade a LED è tenuto a soddisfare sono: elevata affidabilità ed efficienza, elevato fattore di potenza, capacità di regolazione della corrente di uscita e di modulazione del flusso luminoso, basso costo e minimo ingombro (soprattutto nell'illuminazione domestica). L'obiettivo principale è, quindi, riuscire ad ideare soluzioni basate sull'utilizzo di topologie semplici, caratterizzate da ridotto numero di componenti e limitati livelli di stress di corrente e tensione, che non prevedano l'impiego di componenti con breve tempo di vita come i condensatori elettrolitici. Inoltre, nelle applicazioni in cui la compattezza è considerata uno degli aspetti di maggior rilievo, anche la capacità di operare in soft-switching diviene una specifica indispensabile. Ciò è infatti necessario al fine di permettere la minimizzazione del volume delle componenti reattive, tramite l'aumento della frequenza di commutazione nel range delle centinaia di kHz, senza compromettere l'efficienza del convertitore. Per completezza, vale la pena di ricordare che, per ottimizzare il funzionamento dei LED ad elevata luminosità, andrebbero presi in considerazione anche altri aspetti, come ad esempio le problematiche legate alla gestione del calore dissipato dalla lampada, importanti al fine di limitare gli stress termici subiti dai dispositivi e, di conseguenza, migliorare la qualità della luce emessa e massimizzare il tempo di vita della lampada. Tuttavia, essendo il lavoro presentato in questa tesi centrato sulle questioni relative allo stadio di alimentazione, i suddetti problemi di gestione termica, come anche gli aspetti relativi allo sviluppo della tecnologia dei dispositivi non verranno esaminati. L'obiettivo principale del lavoro che verrà descritto nel corso dei prossimi capitoli, è, infatti, la ricerca di soluzioni innovative per il pilotaggio da rete elettrica di lampade basate su tecnologia a stato solido. Verranno pertanto approfonditamente trattate le tematiche relative ad analisi, ottimizzazione e sviluppo di topologie che siano in grado di soddisfare i requisiti precedentemente enunciati e di affrontare con successo le sfide proposte dalla continua evoluzione dello scenario del "general lighting". Per prima cosa, sarà fornita una visione di insieme riguardante lo stato dell'arte del mercato dell'illuminazione, le caratteristiche dei dispositivi di illuminazione a stato solido ed i principali aspetti relativi al loro pilotaggio. Dopo questa prima sezione introduttiva, la tematica relativa all'alimentazione da rete elettrica di tali dispositivi verrà approfonditamente discussa. Differenti modi di approcciare il problema, a seconda della specifica applicazione considerata, verranno discussi. Il primo tipo di approccio che verrà esaminato si basa sull'uso di una semplice struttura, formata da un singolo stadio di conversione di potenza. Essa è in grado di fornire al contempo il rispetto degli standard che limitano il contenuto armonico della corrente di ingresso, l'isolamento galvanico e la regolazione della corrente e dell'intensità luminosa in uscita. I vincoli, dettati dall'esigenza di garantire il rispetto della normativa EN 61000-3-2, in applicazioni di bassa potenza (<15W) prive di uno stadio dedicato alla correzione del fattore di potenza, verranno approfonditamente trattati. Saranno, poi, illustrati i risultati dello studio, sviluppo ed ottimizzazione di un convertitore a singolo stadio, operante ad elevata frequenza di commutazione, basato sulla topologia flyback a mezzo ponte asimmetrico. La semplicità, il ridotto numero di componenti ed il basso costo, che caratterizzano tale tipo di soluzione, la rendono adatta all'alimentazione di lampade per il settore residenziale, in cui la compattezza dello stadio di alimentazione è di fondamentale importanza al fine di consentirne l'alloggiamento nei classici socket E27. L'analisi effettuata, la procedura di progetto ed risultati ottenuti in simulazione ed a livello sperimentale durante lo studio di tale topologia verranno accuratamente descritti e discussi. Un altro interessante tipo di approccio che verrà considerato si basa sull'utilizzo di topologie integrate, nelle quali due diversi stadi di conversione vengono uniti tramite la condivisione dello stesso interruttore di potenza e della relativa circuiteria di comando. Nel convertitore che ne risulta, la correzione del fattore di potenza e la regolazione della corrente nei LED saranno dunque garantite dalla combinazione dei due semi-stadi, il cui interruttore comune dovrà essere in grado di gestire sia la potenza di ingresso che la corrente di uscita. Rispetto alla configurazione a due stadi convenzionale, la soluzione ottenuta tramite l'integrazione consente una minore complessità circuitale, un ridotto numero di componenti e, di conseguenza, una maggiore compattezza ed un minor costo. Tutto ciò viene guadagnato a scapito di un maggiore livello di stress nei componenti e della perdita di un grado di libertà nel progetto del convertitore. L'isolamento galvanico può essere garantito o meno a seconda del tipo di topologie che vengono selezionate per l'integrazione. Se la scelta ricade su topologie non isolate, la sicurezza dell'utente andrà comunque garantita isolando meccanicamente l'involucro della lampada. I problemi legati alla necessità di smorzare la componente alternata della potenza assorbita dalla rete, evitando al contempo l'utilizzo di componenti con basso tempo di vita, come i condensatori elettrolitici, verranno discussi. A tal proposito si studieranno le caratteristiche di un insieme di topologie integrate, al fine di fornirne un'analisi ed una procedura di design generalizzate. Se ne esaminerà, inoltre, la capacità di attenuare la componente ondulatoria della tensione di ingresso che viene trasferita al carico, dove si traduce in un'oscillazione della corrente di alimentazione fornita ai LED. Verrà proposta, poi, una soluzione basata su una topologia derivante dall'integrazione di due convertitori di tipo step-down (abbassatori di tensione), per applicazioni di "down-lighting", dimensionata per una potenza di circa 15W. Se ne discuteranno, in particolare, i dettagli di maggiore interesse relativi all'analisi effettuata, alla procedura di progetto ed ai risultati dei test effettuati in ambiente di simulazione. L'ultimo tipo di approccio considerato prevede, infine, l'utilizzo di una topologia multi-stadio, ritenuta una scelta appropriata soprattutto per applicazioni lighting di potenza elevata (>60W), come l'illuminazione stradale, in cui la compattezza dell'alimentatore non è ritenuta un aspetto di primaria importanza. Tramite questo tipo di soluzione è, infatti, possibile ottimizzare le prestazioni del convertitore sia dal lato della rete che dal lato del carico. Si riescono a garantire, in tal modo, un'efficace correzione del fattore di potenza, un adeguato controllo della corrente di uscita ed un'appropriata modulazione del flusso luminoso emesso dalla lampada. L'isolamento galvanico può essere fornito dallo stadio di ingresso o da quello di uscita o da un aggiuntivo stadio DC-DC intermedio, operante a catena aperta con rapporto di conversione di tensione costante. In quest'ultimo caso la struttura del convertitore, si trasforma, dalla classica configurazione a due stadi, in una topologia a triplo stadio. Il problema che nasce dalla necessità di assicurare un elevato livello di efficienza del sistema, nonostante l'interposizione di ripetuti stadi di conversione dell'energia tra la rete ed il carico a LED, può essere efficacemente risolto grazie alla flessibilità che caratterizza tale tipo di struttura. L'aumento del numero dei gradi di libertà in fase progettuale permette, infatti, di ottimizzare con semplicità ogni singolo stadio. Per comprovare limiti e potenzialità di tale tipo di approccio, si è deciso di studiare un ballast (dimensionato per una potenza nominale di 150W) basato sulla topologia a triplo stadio precedentemente menzionata, per applicazioni nell'ambito dell'illuminazione stradale. L'analisi condotta, la procedura di progetto ed i risultati delle simulazioni effettuate verranno discussi nel dettaglio, così come i risultati sperimentali dei test di laboratorio effettuati sul prototipo costruito.

Novel Offline Switched Mode Power Supplies for Solid State Lighting Applications

SICHIROLLO, FRANCESCO
2013

Abstract

Negli ultimi anni i dispositivi LED di potenza ad elevata luminosità (HBLED) hanno attirato in misura sempre crescente l'interesse della comunità scientifica, sia all'interno del mondo accademico che di quello industriale. Tra le varie caratteristiche, che rendono questo tipo di tecnologia interessante, le qualità più apprezzate sono certamente: la robustezza, l'elevata efficienza, le piccole dimensioni, la facilità di modulazione dell'intensità luminosa, il lungo tempo di vita, l'estrema rapidità di accensione e spegnimento e l'assenza di mercurio. Nonostante tutti questi aspetti sembrino dare alla tecnologia a stato solido un netto vantaggio rispetto alle tecnologie concorrenti, l'utilizzo dei LED di potenza nel campo dell'illuminazione rimane a tutt'oggi abbastanza limitato. La necessità di ulteriori progressi nella tecnologia dei dispositivi, da un lato, e dello sviluppo di soluzioni in grado di garantirne il corretto ed efficiente pilotaggio, dall'altro, ne hanno, infatti, fino ad ora frenato la diffusione rispetto alle attese. Quest'ultimo aspetto, in particolare, è al giorno d'oggi considerata il vero "collo di bottiglia" in vista dell'impiego su larga scala della tecnologia a stato solido, in sostituzione delle soluzioni, tutt'ora dominanti nel mercato dell'illuminazione, basate sull'utilizzo di lampade alogene e a fluorescenza. Se, da un lato, infatti, è vero che alcuni aspetti della tecnologia dei dispositivi (e.g. variabilità delle prestazioni con la temperatura, qualità della luce, calo dell'efficienza luminosa con l'aumentare della corrente, elevato costo per lumen, ecc...) necessitano di essere ulteriormente perfezionati, dall'altro è ormai universalmente riconosciuto che l'elemento chiave per l'ampia diffusione dell'illuminazione a stato solido è proprio l'ottimizzazione dello stadio di alimentazione. In particolare, le specifiche più importati che un ballast per lampade a LED è tenuto a soddisfare sono: elevata affidabilità ed efficienza, elevato fattore di potenza, capacità di regolazione della corrente di uscita e di modulazione del flusso luminoso, basso costo e minimo ingombro (soprattutto nell'illuminazione domestica). L'obiettivo principale è, quindi, riuscire ad ideare soluzioni basate sull'utilizzo di topologie semplici, caratterizzate da ridotto numero di componenti e limitati livelli di stress di corrente e tensione, che non prevedano l'impiego di componenti con breve tempo di vita come i condensatori elettrolitici. Inoltre, nelle applicazioni in cui la compattezza è considerata uno degli aspetti di maggior rilievo, anche la capacità di operare in soft-switching diviene una specifica indispensabile. Ciò è infatti necessario al fine di permettere la minimizzazione del volume delle componenti reattive, tramite l'aumento della frequenza di commutazione nel range delle centinaia di kHz, senza compromettere l'efficienza del convertitore. Per completezza, vale la pena di ricordare che, per ottimizzare il funzionamento dei LED ad elevata luminosità, andrebbero presi in considerazione anche altri aspetti, come ad esempio le problematiche legate alla gestione del calore dissipato dalla lampada, importanti al fine di limitare gli stress termici subiti dai dispositivi e, di conseguenza, migliorare la qualità della luce emessa e massimizzare il tempo di vita della lampada. Tuttavia, essendo il lavoro presentato in questa tesi centrato sulle questioni relative allo stadio di alimentazione, i suddetti problemi di gestione termica, come anche gli aspetti relativi allo sviluppo della tecnologia dei dispositivi non verranno esaminati. L'obiettivo principale del lavoro che verrà descritto nel corso dei prossimi capitoli, è, infatti, la ricerca di soluzioni innovative per il pilotaggio da rete elettrica di lampade basate su tecnologia a stato solido. Verranno pertanto approfonditamente trattate le tematiche relative ad analisi, ottimizzazione e sviluppo di topologie che siano in grado di soddisfare i requisiti precedentemente enunciati e di affrontare con successo le sfide proposte dalla continua evoluzione dello scenario del "general lighting". Per prima cosa, sarà fornita una visione di insieme riguardante lo stato dell'arte del mercato dell'illuminazione, le caratteristiche dei dispositivi di illuminazione a stato solido ed i principali aspetti relativi al loro pilotaggio. Dopo questa prima sezione introduttiva, la tematica relativa all'alimentazione da rete elettrica di tali dispositivi verrà approfonditamente discussa. Differenti modi di approcciare il problema, a seconda della specifica applicazione considerata, verranno discussi. Il primo tipo di approccio che verrà esaminato si basa sull'uso di una semplice struttura, formata da un singolo stadio di conversione di potenza. Essa è in grado di fornire al contempo il rispetto degli standard che limitano il contenuto armonico della corrente di ingresso, l'isolamento galvanico e la regolazione della corrente e dell'intensità luminosa in uscita. I vincoli, dettati dall'esigenza di garantire il rispetto della normativa EN 61000-3-2, in applicazioni di bassa potenza (<15W) prive di uno stadio dedicato alla correzione del fattore di potenza, verranno approfonditamente trattati. Saranno, poi, illustrati i risultati dello studio, sviluppo ed ottimizzazione di un convertitore a singolo stadio, operante ad elevata frequenza di commutazione, basato sulla topologia flyback a mezzo ponte asimmetrico. La semplicità, il ridotto numero di componenti ed il basso costo, che caratterizzano tale tipo di soluzione, la rendono adatta all'alimentazione di lampade per il settore residenziale, in cui la compattezza dello stadio di alimentazione è di fondamentale importanza al fine di consentirne l'alloggiamento nei classici socket E27. L'analisi effettuata, la procedura di progetto ed risultati ottenuti in simulazione ed a livello sperimentale durante lo studio di tale topologia verranno accuratamente descritti e discussi. Un altro interessante tipo di approccio che verrà considerato si basa sull'utilizzo di topologie integrate, nelle quali due diversi stadi di conversione vengono uniti tramite la condivisione dello stesso interruttore di potenza e della relativa circuiteria di comando. Nel convertitore che ne risulta, la correzione del fattore di potenza e la regolazione della corrente nei LED saranno dunque garantite dalla combinazione dei due semi-stadi, il cui interruttore comune dovrà essere in grado di gestire sia la potenza di ingresso che la corrente di uscita. Rispetto alla configurazione a due stadi convenzionale, la soluzione ottenuta tramite l'integrazione consente una minore complessità circuitale, un ridotto numero di componenti e, di conseguenza, una maggiore compattezza ed un minor costo. Tutto ciò viene guadagnato a scapito di un maggiore livello di stress nei componenti e della perdita di un grado di libertà nel progetto del convertitore. L'isolamento galvanico può essere garantito o meno a seconda del tipo di topologie che vengono selezionate per l'integrazione. Se la scelta ricade su topologie non isolate, la sicurezza dell'utente andrà comunque garantita isolando meccanicamente l'involucro della lampada. I problemi legati alla necessità di smorzare la componente alternata della potenza assorbita dalla rete, evitando al contempo l'utilizzo di componenti con basso tempo di vita, come i condensatori elettrolitici, verranno discussi. A tal proposito si studieranno le caratteristiche di un insieme di topologie integrate, al fine di fornirne un'analisi ed una procedura di design generalizzate. Se ne esaminerà, inoltre, la capacità di attenuare la componente ondulatoria della tensione di ingresso che viene trasferita al carico, dove si traduce in un'oscillazione della corrente di alimentazione fornita ai LED. Verrà proposta, poi, una soluzione basata su una topologia derivante dall'integrazione di due convertitori di tipo step-down (abbassatori di tensione), per applicazioni di "down-lighting", dimensionata per una potenza di circa 15W. Se ne discuteranno, in particolare, i dettagli di maggiore interesse relativi all'analisi effettuata, alla procedura di progetto ed ai risultati dei test effettuati in ambiente di simulazione. L'ultimo tipo di approccio considerato prevede, infine, l'utilizzo di una topologia multi-stadio, ritenuta una scelta appropriata soprattutto per applicazioni lighting di potenza elevata (>60W), come l'illuminazione stradale, in cui la compattezza dell'alimentatore non è ritenuta un aspetto di primaria importanza. Tramite questo tipo di soluzione è, infatti, possibile ottimizzare le prestazioni del convertitore sia dal lato della rete che dal lato del carico. Si riescono a garantire, in tal modo, un'efficace correzione del fattore di potenza, un adeguato controllo della corrente di uscita ed un'appropriata modulazione del flusso luminoso emesso dalla lampada. L'isolamento galvanico può essere fornito dallo stadio di ingresso o da quello di uscita o da un aggiuntivo stadio DC-DC intermedio, operante a catena aperta con rapporto di conversione di tensione costante. In quest'ultimo caso la struttura del convertitore, si trasforma, dalla classica configurazione a due stadi, in una topologia a triplo stadio. Il problema che nasce dalla necessità di assicurare un elevato livello di efficienza del sistema, nonostante l'interposizione di ripetuti stadi di conversione dell'energia tra la rete ed il carico a LED, può essere efficacemente risolto grazie alla flessibilità che caratterizza tale tipo di struttura. L'aumento del numero dei gradi di libertà in fase progettuale permette, infatti, di ottimizzare con semplicità ogni singolo stadio. Per comprovare limiti e potenzialità di tale tipo di approccio, si è deciso di studiare un ballast (dimensionato per una potenza nominale di 150W) basato sulla topologia a triplo stadio precedentemente menzionata, per applicazioni nell'ambito dell'illuminazione stradale. L'analisi condotta, la procedura di progetto ed i risultati delle simulazioni effettuate verranno discussi nel dettaglio, così come i risultati sperimentali dei test di laboratorio effettuati sul prototipo costruito.
30-gen-2013
Inglese
Illuminazione a stato solido / Solid state lighting LED / LED Converitori a commutazione / Switched mode power supplies Convertitori AC-DC / AC-DC Converters
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
sichirollo_francesco_tesi.pdf

accesso aperto

Dimensione 7.86 MB
Formato Adobe PDF
7.86 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110458
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110458