La seguente tesi riassume i risultati principali ottenuti durante lo svolgimento dell'attività di ricerca del Dottorando candidato. L'attività si è concentrata principalmente nello studio dei difetti e dei meccanismi fisici che limitano l'efficienza dei diodi emettitori di luce (LED) basati su nitruro di gallio (GaN). Nella prima parte della tesi, verranno brevemente discusse le proprietà fondamentali del nitruro di gallio, comprese le sue leghe principali, la struttura cristallina ed i campi di polarizzazione interni. Successivamente, verrà presentata una situazione aggiornata basata sulla letteratura dei difetti di punto e delle dislocazioni tipici del nitruro di gallio. Particolare attenzione verrà riservata al ruolo svolto delle dislocazioni e dalle vacanze di gallio e azoto, poiché essi sono difetti nativi del materiale che vengono comunemente introdotti durante l'accrescimento del cristallo. Tale discussione verrà supportata da risultati sia teorici sia sperimentali. La seconda parte della tesi sarà dedicata allo studio dell'efficienza quantica dei LED. Inizialmente verrà data una descrizione dei suoi parametri principali, dopodiché ci si concentrerà sui processi fisici che ne determinano eventuali limiti. In particolare, la ricombinazione non radiativa Shockley-Read-Hall (SRH) è nota per causare una riduzione dell'efficienza a basse densità di corrente. Contemporaneamente, ad alti livelli di iniezione l'efficienza dei LED basati su GaN risulta compromessa da un effetto noto come efficiency droop. Entrambi questi processi verranno analizzati, fornendo spiegazioni supportate da dati sia teorici che sperimentali. Nella terza parte del lavoro saranno introdotte alcune tecniche avanzate, utili per lo studio dei livelli profondi nei semiconduttori nonché per stimare i coefficienti di ricombinazione. Le tecniche analizzate sono capacitive deep level transient spectroscopy (DLTS), il tempo di vita differenziale dei portatori e il deep level optical spectroscopy (DLOS), e per ognuna di esse verrà fornita una descrizione teorica e verranno analizzati i principali vantaggi e svantaggi sia sotto un punto di vista teorico che sperimentale. Successivamente, nel quarto capitolo, sarà effettuata una trattazione approfondita e aggiornata allo stato dell'arte sui meccanismi di degrado della regione attiva dei LED moderni, focalizzandosi sulle cinetiche di degrado della potenza ottica e delle caratteristiche elettriche dei dispositivi. La discussione avrà come scopo l'identificazione dei meccanismi di degrado più comunemente osservati nei dispositivi reali e riportati in letteratura. Il quinto capitolo sarà dedicato alla presentazione dei risultati più rilevanti ottenuti durante lo svolgimento dell'attività di ricerca e sarà composto da tre sezioni. Nella prima sezione verrà descritta un'analisi dettagliata effettuata su dispositivi LED basati su InGaN. Lo studio aveva lo scopo di investigare la relazione tra il coefficiente di ricombinazione SRH A del modello ABC e la concentrazione dei difetti osservati tramite misure DLTS e DLOS. Infatti, sebbene la ricombinazione SRH sia ovviamente correlata con la difettosità del materiale, i vari difetti possono impattare in maniera diversa sul tasso di ricombinazione non radiativa complessivo, a seconda della loro posizione energetica nel diagramma a bande e di altri parametri. L'analisi ha rivelato la presenza di un livello profondo comune a tutti i campioni, denominato “e2” e avente energia di attivazione E_{C}-E_{T}\sim0.7 eV, la cui concentrazione risulta ben correlata con il coefficiente A stimato con misure di tempo di vita differenziale dei portatori. L'origine della ricombinazione SRH nei dispositivi analizzati è stata dunque ricondotta alla presenza di tale difetto. Successive analisi delle cinetiche di intrappolamento hanno poi rivelato che la trappola in questione si comportava come un difetto di tipo esteso. Contemporaneamente, da una approfondita ricerca in letteratura si è visto che livelli profondi simili a quello riportato erano stati già descritti in passato e associati a difetti nativi del GaN, probabilmente vacanze o complessi che esse formano con altre impurità. Per tali ragioni, l'origine del livello “e2” è stato associato a difetti nativi del GaN allineati lungo le dislocazioni del materiale. La seconda sezione del quinto capitolo presenterà due lavori svolti per studiare i meccanismi di degrado dei LED basati su InGaN. Nel primo di essi i dispositivi, appartenenti allo stesso set analizzati precedentemente, sono stati sottoposti a stress ad elevate temperature e corrente costante, che ha provocato un sensibile calo della potenza ottica emessa. Dall'analisi delle variazioni dell'efficienza quantica esterna, della fotoluminescenza e della fotocorrente, è stato dimostrato che in questi dispositivi il degrado è stato causato dall'incremento della ricombinazione SRH e non da un calo dell'efficienza di iniezione. Misure DLTS hanno poi dimostrato che lo stress ha indotto un aumento notevole della concentrazione dello stesso livello profondo “e2” individuato precedentemente, confermando il ruolo chiave di tale trappola nel determinare il tasso di ricombinazione non radiativa in questi LED. Il secondo lavoro si è più focalizzato nello studio delle cinetiche di degrado osservate durante lo stress di un altro set di campioni. In particolare, si è visto che lo stress ha provocato l'accumulo di carica in prossimità della regione attiva dei dispositivi e che l'ammontare di tale carica è risultato correlato linearmente con il coefficiente SRH A . Sia l'accumulazione della carica che l'incremento del coefficiente SRH hanno mostrato una dipendenza dalla radice quadrata del tempo di stress. Tale risultato ha suggerito che il degrado fosse causato da processi di tipo diffusivo, probabilmente diffusione di impurità verso la regione attiva. Inoltre, lo stress ha anche indotto la riduzione della concentrazione di un livello superficiale ( E_{C}-E_{T}\sim0.37 eV) e l'aumento della concentrazione di un livello più profondo ( E_{C}-E_{T}\sim0.9 eV). Queste variazioni nella difettosità del materiale si sono rivelate compatibili con le variazioni osservate nella capacità e nel coefficiente di ricombinazione SRH. In particolare, la maggiore concentrazione del difetto più profondo, che è più efficiente in termini di ricombinazione non radiativa, ha probabilmente causato l'aumento del coefficiente A , mentre la riduzione della concentrazione del livello più superficiale può aver portato all'aumento di capacità osservato. Sulla base di questi risultati sperimentali nonché su altri lavori pubblicati in letteratura, il degrado è stato imputato alla graduale diffusione di impurità, probabilmente magnesio e idrogeno, verso la regione attiva dei dispositivi. La terza ed ultima sezione del quinto capitolo verrà dedicata ad un'analisi dettagliata effettuata sul fenomeno noto come thermal droop. In particolare, è stata osservata una correlazione tra il calo di potenza ottica a seguito dell'aumento di temperatura e la concentrazione dei difetti. Per giustificare queste osservazioni, sono stati analizzati diversi meccanismi che generalmente vengono collegati all'efficienza dei dispositivi: la ricombinazione SRH, l'emissione termoionica dalla buca quantica, il tunneling assistito da fononi e l'emissione termoionica combinata al tunneling attraverso uno stato trappola. Nessuno di questi meccanismi si è rivelato in grado di riprodurre accuratamente i dati sperimentali, nel caso dei dispositivi in esame. Di conseguenza, è stato sviluppato un nuovo modello basato su una estensione del tunneling assistito da fononi a doppio step, dalla buca quantica allo stato trappola, che funge da riserva di elettroni, e da quest'ultimo al bordo della banda di conduzione. Tale modello verrà discusso e verrà in particolar modo mostrato come usando parametri estratti dalle simulazioni e dalle misure DLTS effettuate, sia stato possibile ottenere un'equazione in grado di riprodurre accuratamente i dati sperimentali su tutti i campioni analizzati. Utili informazioni sull’attività di ricerca possono essere trovate negli articoli in cui ha collaborato il candidato ed elencati nella successiva sezione.

Defect-Related Processes and their Influence on the Efficiency and Degradation of InGaN-Based Leds

LA GRASSA, MARCO
2017

Abstract

La seguente tesi riassume i risultati principali ottenuti durante lo svolgimento dell'attività di ricerca del Dottorando candidato. L'attività si è concentrata principalmente nello studio dei difetti e dei meccanismi fisici che limitano l'efficienza dei diodi emettitori di luce (LED) basati su nitruro di gallio (GaN). Nella prima parte della tesi, verranno brevemente discusse le proprietà fondamentali del nitruro di gallio, comprese le sue leghe principali, la struttura cristallina ed i campi di polarizzazione interni. Successivamente, verrà presentata una situazione aggiornata basata sulla letteratura dei difetti di punto e delle dislocazioni tipici del nitruro di gallio. Particolare attenzione verrà riservata al ruolo svolto delle dislocazioni e dalle vacanze di gallio e azoto, poiché essi sono difetti nativi del materiale che vengono comunemente introdotti durante l'accrescimento del cristallo. Tale discussione verrà supportata da risultati sia teorici sia sperimentali. La seconda parte della tesi sarà dedicata allo studio dell'efficienza quantica dei LED. Inizialmente verrà data una descrizione dei suoi parametri principali, dopodiché ci si concentrerà sui processi fisici che ne determinano eventuali limiti. In particolare, la ricombinazione non radiativa Shockley-Read-Hall (SRH) è nota per causare una riduzione dell'efficienza a basse densità di corrente. Contemporaneamente, ad alti livelli di iniezione l'efficienza dei LED basati su GaN risulta compromessa da un effetto noto come efficiency droop. Entrambi questi processi verranno analizzati, fornendo spiegazioni supportate da dati sia teorici che sperimentali. Nella terza parte del lavoro saranno introdotte alcune tecniche avanzate, utili per lo studio dei livelli profondi nei semiconduttori nonché per stimare i coefficienti di ricombinazione. Le tecniche analizzate sono capacitive deep level transient spectroscopy (DLTS), il tempo di vita differenziale dei portatori e il deep level optical spectroscopy (DLOS), e per ognuna di esse verrà fornita una descrizione teorica e verranno analizzati i principali vantaggi e svantaggi sia sotto un punto di vista teorico che sperimentale. Successivamente, nel quarto capitolo, sarà effettuata una trattazione approfondita e aggiornata allo stato dell'arte sui meccanismi di degrado della regione attiva dei LED moderni, focalizzandosi sulle cinetiche di degrado della potenza ottica e delle caratteristiche elettriche dei dispositivi. La discussione avrà come scopo l'identificazione dei meccanismi di degrado più comunemente osservati nei dispositivi reali e riportati in letteratura. Il quinto capitolo sarà dedicato alla presentazione dei risultati più rilevanti ottenuti durante lo svolgimento dell'attività di ricerca e sarà composto da tre sezioni. Nella prima sezione verrà descritta un'analisi dettagliata effettuata su dispositivi LED basati su InGaN. Lo studio aveva lo scopo di investigare la relazione tra il coefficiente di ricombinazione SRH A del modello ABC e la concentrazione dei difetti osservati tramite misure DLTS e DLOS. Infatti, sebbene la ricombinazione SRH sia ovviamente correlata con la difettosità del materiale, i vari difetti possono impattare in maniera diversa sul tasso di ricombinazione non radiativa complessivo, a seconda della loro posizione energetica nel diagramma a bande e di altri parametri. L'analisi ha rivelato la presenza di un livello profondo comune a tutti i campioni, denominato “e2” e avente energia di attivazione E_{C}-E_{T}\sim0.7 eV, la cui concentrazione risulta ben correlata con il coefficiente A stimato con misure di tempo di vita differenziale dei portatori. L'origine della ricombinazione SRH nei dispositivi analizzati è stata dunque ricondotta alla presenza di tale difetto. Successive analisi delle cinetiche di intrappolamento hanno poi rivelato che la trappola in questione si comportava come un difetto di tipo esteso. Contemporaneamente, da una approfondita ricerca in letteratura si è visto che livelli profondi simili a quello riportato erano stati già descritti in passato e associati a difetti nativi del GaN, probabilmente vacanze o complessi che esse formano con altre impurità. Per tali ragioni, l'origine del livello “e2” è stato associato a difetti nativi del GaN allineati lungo le dislocazioni del materiale. La seconda sezione del quinto capitolo presenterà due lavori svolti per studiare i meccanismi di degrado dei LED basati su InGaN. Nel primo di essi i dispositivi, appartenenti allo stesso set analizzati precedentemente, sono stati sottoposti a stress ad elevate temperature e corrente costante, che ha provocato un sensibile calo della potenza ottica emessa. Dall'analisi delle variazioni dell'efficienza quantica esterna, della fotoluminescenza e della fotocorrente, è stato dimostrato che in questi dispositivi il degrado è stato causato dall'incremento della ricombinazione SRH e non da un calo dell'efficienza di iniezione. Misure DLTS hanno poi dimostrato che lo stress ha indotto un aumento notevole della concentrazione dello stesso livello profondo “e2” individuato precedentemente, confermando il ruolo chiave di tale trappola nel determinare il tasso di ricombinazione non radiativa in questi LED. Il secondo lavoro si è più focalizzato nello studio delle cinetiche di degrado osservate durante lo stress di un altro set di campioni. In particolare, si è visto che lo stress ha provocato l'accumulo di carica in prossimità della regione attiva dei dispositivi e che l'ammontare di tale carica è risultato correlato linearmente con il coefficiente SRH A . Sia l'accumulazione della carica che l'incremento del coefficiente SRH hanno mostrato una dipendenza dalla radice quadrata del tempo di stress. Tale risultato ha suggerito che il degrado fosse causato da processi di tipo diffusivo, probabilmente diffusione di impurità verso la regione attiva. Inoltre, lo stress ha anche indotto la riduzione della concentrazione di un livello superficiale ( E_{C}-E_{T}\sim0.37 eV) e l'aumento della concentrazione di un livello più profondo ( E_{C}-E_{T}\sim0.9 eV). Queste variazioni nella difettosità del materiale si sono rivelate compatibili con le variazioni osservate nella capacità e nel coefficiente di ricombinazione SRH. In particolare, la maggiore concentrazione del difetto più profondo, che è più efficiente in termini di ricombinazione non radiativa, ha probabilmente causato l'aumento del coefficiente A , mentre la riduzione della concentrazione del livello più superficiale può aver portato all'aumento di capacità osservato. Sulla base di questi risultati sperimentali nonché su altri lavori pubblicati in letteratura, il degrado è stato imputato alla graduale diffusione di impurità, probabilmente magnesio e idrogeno, verso la regione attiva dei dispositivi. La terza ed ultima sezione del quinto capitolo verrà dedicata ad un'analisi dettagliata effettuata sul fenomeno noto come thermal droop. In particolare, è stata osservata una correlazione tra il calo di potenza ottica a seguito dell'aumento di temperatura e la concentrazione dei difetti. Per giustificare queste osservazioni, sono stati analizzati diversi meccanismi che generalmente vengono collegati all'efficienza dei dispositivi: la ricombinazione SRH, l'emissione termoionica dalla buca quantica, il tunneling assistito da fononi e l'emissione termoionica combinata al tunneling attraverso uno stato trappola. Nessuno di questi meccanismi si è rivelato in grado di riprodurre accuratamente i dati sperimentali, nel caso dei dispositivi in esame. Di conseguenza, è stato sviluppato un nuovo modello basato su una estensione del tunneling assistito da fononi a doppio step, dalla buca quantica allo stato trappola, che funge da riserva di elettroni, e da quest'ultimo al bordo della banda di conduzione. Tale modello verrà discusso e verrà in particolar modo mostrato come usando parametri estratti dalle simulazioni e dalle misure DLTS effettuate, sia stato possibile ottenere un'equazione in grado di riprodurre accuratamente i dati sperimentali su tutti i campioni analizzati. Utili informazioni sull’attività di ricerca possono essere trovate negli articoli in cui ha collaborato il candidato ed elencati nella successiva sezione.
24-gen-2017
Inglese
GaN, InGaN, LEDs, light-emitting-diode, defects, dlts, dlos, thermal droop
Zanoni, Enrico
BERTOCCO, MATTEO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
tesi_lagrassa_marco.pdf

accesso solo da BNCF e BNCR

Licenza: Tutti i diritti riservati
Dimensione 3.87 MB
Formato Adobe PDF
3.87 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110640
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110640