La proteomica riguarda lo studio sistematico delle proteine al fine di fornire una visione completa della funzione, della struttura e della regolazione dei sistemi biologici. I progressi avvenuti negli ultimi decenni, sia per quanto riguarda la strumentazione sia le metodologie utilizzate, hanno permesso di ampliare il campo di studi biologici passando dall’analisi di proteine purificate all’analisi di miscele complesse. La proteomica sta rapidamente diventando una componente essenziale della ricerca biologica ed associato ai progressi della bioinformatica, questo approccio alla descrizione dei sistemi biologici avrà indubbiamente un impatto notevole sulla nostra comprensione dei fenotipi sia delle cellule normali e malate. Inizialmente la proteomica era focalizzata principalmente sulla generazione di mappe proteiche bidimensionali utilizzando elettroforesi su gel di poliacrilammide. La verifica dell’espressione o la misurazione quantitativa dei livelli globali di proteine può ancora essere fatta sulla base dei gel bidimensionali, tuttavia oramai questi compiti sono affidati alla spettrometria di massa la quale può contare su di un’elevata sensibilità e specificità. La spettrometria di massa applicata alle proteine offre molti vantaggi: oltre a calcolare il peso molecolare con elevata precisione, questa tecnica permette di analizzare e caratterizzare la sequenza aminoacidica. Può anche essere utilizzata nello studio delle modificazioni post-traduzionali e per monitorare la formazione di complessi in soluzione. Infine può essere applicata con differenti scopi, quali l'analisi conformazionale, l'analisi della cinetica di ripiegamento e di studi sulle attività catalitiche delle proteine. Durante il dottorato di ricerca la mia attenzione è stata focalizzata soprattutto sull’utilizzo di tale tecnica abbinata a metodologie di chimica delle proteine quali ad esempio l’elettroforesi mono e bidimensionali, differenti cromatografie in fase liquida, la sintesi peptidica in fase solida e l’utilizzo di proteasi enzimatiche. In particolare in questa Tesi di Dottorato gli argomenti di studio sono stati trattati singolarmente, distinguendo i principali progetti in cui sono stato coinvolto in capitoli indipendenti. Brevemente, nel capitolo 2 è proposto lo studio di protease nexin-1 (PN-1), il principale inibitore della trombina a livello cerebrale, volto a chiarire la funzione della porzione glucidica sulla conformazione, stabilità e funzione della proteina mediante lo studio della proteina ricombinante prodotta in E. coli. Nel capitolo 3 è riportato il lavoro concernente la purificazione e la caratterizzazione chimica, in particolare dell’identificazione de novo della sequenza amminoacidica, di un analogo dell’inibitore della fosfolipasi A2 estratto dal siero di Python sebae, il quale ha dimostrato di possedere un effetto citotossico pro-apoptotico e che potrebbe essere sfruttato per lo sviluppo di nuove strategie antitumorali. Nel capitolo 4 l’attenzione è stata concentrata a chiarire le dinamiche molecolari che portano allo sviluppo di iperossaluria primaria di tipo I mediante lo studio del mutante G41R dell’enzima alanina:gliossilato amminotransferasi (AGT) analizzando in particolar modo i meccanismi che portano G41R ad essere maggiormente soggetto a degradazione e aggregazione rispetto alla proteina WT. Infine, il capitolo 5 tratta dell’effetto dello stress ossidativo sul metabolismo del fattore di von Willebrand (VWF). Il fattore di von Willebrand è una glicoproteina plasmatica estremamente complessa le cui dimensioni contribuiscono a regolare l’equilibrio emostatico. Nello specifico, è stato osservato come l’ossidazione di un residuo di metionina situato nel dominio A2 della glicoproteina impedisca il taglio proteolitico da parte di ADAMTS-13, mentre non vada ad influenzare o in alcuni casi addirittura favorisca la proteolisi di VWF da parte di proteasi leucocitarie liberate dai polimorfonucleati in seguito a stati infiammatori.

Protein Chemistry and Molecular Medicine

MASET, FABIO
2011

Abstract

La proteomica riguarda lo studio sistematico delle proteine al fine di fornire una visione completa della funzione, della struttura e della regolazione dei sistemi biologici. I progressi avvenuti negli ultimi decenni, sia per quanto riguarda la strumentazione sia le metodologie utilizzate, hanno permesso di ampliare il campo di studi biologici passando dall’analisi di proteine purificate all’analisi di miscele complesse. La proteomica sta rapidamente diventando una componente essenziale della ricerca biologica ed associato ai progressi della bioinformatica, questo approccio alla descrizione dei sistemi biologici avrà indubbiamente un impatto notevole sulla nostra comprensione dei fenotipi sia delle cellule normali e malate. Inizialmente la proteomica era focalizzata principalmente sulla generazione di mappe proteiche bidimensionali utilizzando elettroforesi su gel di poliacrilammide. La verifica dell’espressione o la misurazione quantitativa dei livelli globali di proteine può ancora essere fatta sulla base dei gel bidimensionali, tuttavia oramai questi compiti sono affidati alla spettrometria di massa la quale può contare su di un’elevata sensibilità e specificità. La spettrometria di massa applicata alle proteine offre molti vantaggi: oltre a calcolare il peso molecolare con elevata precisione, questa tecnica permette di analizzare e caratterizzare la sequenza aminoacidica. Può anche essere utilizzata nello studio delle modificazioni post-traduzionali e per monitorare la formazione di complessi in soluzione. Infine può essere applicata con differenti scopi, quali l'analisi conformazionale, l'analisi della cinetica di ripiegamento e di studi sulle attività catalitiche delle proteine. Durante il dottorato di ricerca la mia attenzione è stata focalizzata soprattutto sull’utilizzo di tale tecnica abbinata a metodologie di chimica delle proteine quali ad esempio l’elettroforesi mono e bidimensionali, differenti cromatografie in fase liquida, la sintesi peptidica in fase solida e l’utilizzo di proteasi enzimatiche. In particolare in questa Tesi di Dottorato gli argomenti di studio sono stati trattati singolarmente, distinguendo i principali progetti in cui sono stato coinvolto in capitoli indipendenti. Brevemente, nel capitolo 2 è proposto lo studio di protease nexin-1 (PN-1), il principale inibitore della trombina a livello cerebrale, volto a chiarire la funzione della porzione glucidica sulla conformazione, stabilità e funzione della proteina mediante lo studio della proteina ricombinante prodotta in E. coli. Nel capitolo 3 è riportato il lavoro concernente la purificazione e la caratterizzazione chimica, in particolare dell’identificazione de novo della sequenza amminoacidica, di un analogo dell’inibitore della fosfolipasi A2 estratto dal siero di Python sebae, il quale ha dimostrato di possedere un effetto citotossico pro-apoptotico e che potrebbe essere sfruttato per lo sviluppo di nuove strategie antitumorali. Nel capitolo 4 l’attenzione è stata concentrata a chiarire le dinamiche molecolari che portano allo sviluppo di iperossaluria primaria di tipo I mediante lo studio del mutante G41R dell’enzima alanina:gliossilato amminotransferasi (AGT) analizzando in particolar modo i meccanismi che portano G41R ad essere maggiormente soggetto a degradazione e aggregazione rispetto alla proteina WT. Infine, il capitolo 5 tratta dell’effetto dello stress ossidativo sul metabolismo del fattore di von Willebrand (VWF). Il fattore di von Willebrand è una glicoproteina plasmatica estremamente complessa le cui dimensioni contribuiscono a regolare l’equilibrio emostatico. Nello specifico, è stato osservato come l’ossidazione di un residuo di metionina situato nel dominio A2 della glicoproteina impedisca il taglio proteolitico da parte di ADAMTS-13, mentre non vada ad influenzare o in alcuni casi addirittura favorisca la proteolisi di VWF da parte di proteasi leucocitarie liberate dai polimorfonucleati in seguito a stati infiammatori.
24-gen-2011
Inglese
mass spectrometry AGT von willebrand factor nexin
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis.pdf

accesso aperto

Dimensione 7.62 MB
Formato Adobe PDF
7.62 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/110909
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-110909