cIl forte aumento, a livello mondiale, del fenomeno della resistenza agli antibiotici richiede lo sviluppo di nuove strategie antimicrobiche, basate su meccanismi d’azione diversi da quelli degli antibiotici, per combattere le infezioni batteriche. Due delle strategie più promettenti in quest’ottica sono la terapia fotodinamica (PDT) e l’utilizzo di peptidi cationici antimicrobici (CAMPs). Durante il mio dottorato di ricerca ho studiato alcuni aspetti peculiari di entrambe queste strategie, in due linee di studio che alla fine sono state riunite. Nella prima linea di ricerca, focalizzata sulla PDT con porfirine cationiche, ho studiato quale impatto abbiano alcune condizioni sperimentali sull’efficienza di fotosensibilizzazione di batteri, ed ho identificato alcuni dei bersagli molecolari della loro azione su Staphylococcus aureus. Nella seconda linea di ricerca ho studiato il meccanismo d’azione di un particolare CAMP, l’apidaecina 1b, che ho successivamente coniugato con un fotosensibilizzatore allo scopo di creare un nuovo, più efficiente, agente antimicrobico. La PDT utilizza molecole capaci di assorbire la luce visibile, dette fotosensibilizzatori (PS), che, quando illuminate in presenza di ossigeno molecolare, generano specie reattive dell’ossigeno, che hanno un forte effetto citotossico su cellule batteriche precedentemente incubate col PS stesso. Nella prima fase di studio ho valutato l’effetto di alcune condizioni sperimentali sulla capacità del PS di legarsi alla cellula batterica e, di conseguenza, sull’efficienza di fotoinattivazione di batteri. In particolare sono stati valutati gli effetti di lavaggi effettuati dopo l’incubazione dei batteri con il PS, nonché della presenza di diversi cationi nel mezzo di incubazione. In questo studio è stata utilizzata una porfirina dicationica, la cui efficienza nella fotoinattivazione di Staphylococcus aureus ed Escherichia coli è stata misurata mediante irradiamento con dose crescenti di luce blu. L’irradiamento è stato effettuato sia lasciando nella sospensione batterica il PS non legato alle cellule che rimuovendolo mediante uno o quattro lavaggi. Questi lavaggi hanno prodotto effetti completamente opposti nei due microrganismi oggetto di studio: da un lato si è riscontrato un forte aumento dell’efficienza di fotosensibilizzazione di E. coli, dall’altro un decremento di quella di S. aureus. L’aumento dell’efficienza di fotosensibilizzazione in E. coli è probabilmente dovuto al fatto che, nel tempo necessario per effettuare i lavaggi, la frazione di porfirina legata alle cellule batteriche riesce a raggiungere siti cellulari più sensibili alla PDT. Il fatto che si sia utilizzato un tempo di incubazione molto breve (5 minuti) rende molto plausibile questa ipotesi. L’aggiunta di un catione monovalente (Na+) nel mezzo di irradiamento non ha causato alcuna variazione dell’efficienza di fotosensibilizzazione di S. aureus, che invece è stata fortemente incrementata da quella di cationi bivalenti (Ca2+ e Mg2+). Al contrario, la fotosensibilizzazione di E. coli è stata sensibilmente diminuita in presenza di cationi (sia mono che bivalenti), con un effetto più marcato in assenza di lavaggi. In ogni caso, utilizzando questa porfirina dicationica gli effetti prodotti sia dai lavaggi che dalla presenza di cationi sono stati minori di quelli riscontrati in precedenza con altri fotosensibilizzatori. Per l’identificazione di alcune delle proteine che sono bersaglio della PDT è stato scelto un approccio di tipo proteomico, comprendente la separazione con elettroforesi bidimensionale dei lisati batterici e l’identificazione di proteine con tecniche di spettrometria di massa. Al fine di ottenere un’analisi il più possibile dettagliata, sono stati valutati i cambiamenti nel profilo proteomico di S. aureus causati dalla PDT con due diverse porfirine cationiche. Per ciascuna di queste porfirine, che differiscono notevolmente nell’attività fotosensibilizzante, sono stati selezionati, sulla base della differente mortalità indotta in sospensioni di S. aureus, due trattamenti fotodinamici: uno subletale, che consente una sopravvivenza dal 60 all’80% dei batteri, e l’altro più forte, che consente la sopravvivenza di circa l’1% dei batteri. Le mappe bidimensionali ottenute da lisati proteici di batteri non sottoposti a PDT sono quindi state confrontate, mediante l’utilizzo dell’apposito software Proteomweaver, con quelle ottenute da lisati di batteri sottoposti ai diversi trattamenti fotodinamici. Tutte le proteine delle mappe bidimensionali che, a seguito dell’analisi, hanno mostrato di essere state significativamente modificate dai trattamenti fotodinamici, sono quindi state identificate tramite spettrometria di massa (MALDI-TOF/TOF). Sulla base delle loro funzioni nella cellula, le proteine identificate sono quindi state assegnate a diverse classi funzionali, al fine di scoprire quali funzioni cellulari venissero maggiormente colpite dalla PDT. Tra le 265 proteine globalmente identificate dall’analisi con Proteomweaver, 70 hanno mostrato significative variazioni di intensità dovute ai trattamenti fotodinamici; tra queste, la maggioranza era composta da proteine implicate nella risposta allo stress ossidativo, nel metabolismo energetico e nella captazione di zuccheri. Comparando gli effetti della PDT tra le due porfirine, si è scoperto che i livelli di intensità di molte proteine sono stati modificati da entrambe, ed in genere nella stessa direzione. Particolarmente interessante è stata la scoperta che le tipologie di modifica del profilo proteomico di S. aureus, causate dai trattamenti fotodinamici, non sono compatibili con le risposte ad agenti ossidanti (come per esempio perossidi o superossidi) da parte della cellula batterica; questo suggerisce che la PDT ha come bersagli specifiche proteine. I risultati ottenuti sono di particolare importanza perché, approfondendo la conoscenza del meccanismo d’azione della PDT, potrebbero aiutare nel disegno di nuovi fotosensibilizzatori più efficienti di quelli attualmente in uso. Nella seconda linea di ricerca ho studiato alcune proprietà legate all’attività antimicrobica ed alla capacità di ingresso nella cellula batterica di un peptide cationico antimicrobico, l’apidaecina 1b. I risultati ottenuti da questo studio hanno quindi permesso di utilizzare l’apidaecina stessa come vettore di altre molecole, coniugandola con una porfirina al fine di ottenere un nuovo agente antimicrobico, con un maggior spettro d’azione rispetto ai suoi singoli costituenti. L’apidecina 1b è un piccolo (soli 18 amminoacidi) peptide che viene molto studiato per via di alcune sue particolari capacità, tra cui una buona inibizione della crescita di batteri Gram (-) e, soprattutto, un’eccezionale abilità nell’entrare nelle cellule mediante un meccanismo che non comporta la formazione di pori nelle membrane. Inoltre, è stato dimostrato che l’apidaecina non presenta tossicità per cellule eucariotiche a concentrazioni che sono invece letali per i batteri. Allo scopo di studiare il meccanismo d’azione dell’apidaecina sono stati sintetizzati degli ibridi peptide-peptoide dell’apidaecina stessa, nei quali ognuno dei tre residui di arginina è stato sostituito con residui di N-(3-guanidinopropyl)-glicina, e si sono quindi valutate le MIC (minima concentrazione inibente) di ognuno degli analoghi nei confronti di diversi batteri. Né l’apidaecina né i suoi ibridi peptide-peptoide hanno mostrato attività antimicrobica nei confronti di Staphylococcus aureus e Pseudomonas aeruginosa. Invece, in Escherichia coli si è potuta osservare una lieve diminuzione del valore della MIC, rispetto al peptide naturale, con gli ibridi sostituiti nelle posizioni 4 e 12, mentre l’attività antimicrobica veniva completamente persa nell’ibrido sostituito nella posizione 17. Questi risultati suggeriscono che l’arginina in posizione 17 possa giocare un ruolo particolarmente importante nel meccanismo di traslocazione dell’apidaecina all’interno della cellula. Quindi, sia l’apidaecina che i suoi ibridi peptide-peptoide sono stati marcati mediante legame con una molecola di fluoresceina, allo scopo di monitorarne la capacità di legame con la cellula batterica mediante tecniche di microscopia di fluorescenza e citometria di flusso. Sfortunatamente, la marcatura con la fluoresceina ha causato la perdita dell’attività antimicrobica e di gran parte della capacità di legarsi ed entrare nella cellula batterica sia dell’apidaecina che dei suoi ibridi. Questo effetto è dovuto principalmente alla massa aggiuntiva portata dalla fluoresceina ai peptidi. Tuttavia, si è osservato che, a differenza degli altri, l’ibrido peptide-peptoide con la sostituzione dell’arginina 17 non presentava alcuna capacità di legarsi alle cellule batteriche. Questo risultato ha confermato sia l’importanza di questa arginina per la capacità antimicrobica dell’apidaecina che, in generale, l’importanza del dominio C-terminale sulla capacità di legame e di ingresso nella cellula batterica. Il coniugato (che è stato chiamato T-api), ottenuto dall’unione di una porfirina anionica (monocarbossi-tetrafenil porfirina, cTPP) con il dominio N-terminale dell’apidaecina 1b, non ha mostrato alcuna attività antimicrobica al buio. Tuttavia, in seguito all’irradiamento con luce blu, T-api si è dimostrato un efficiente fotosensibilizzatore, con un’efficienza fortemente dipendente dalle diverse tipologie di batteri considerate. In particolare, il trattamento fotodinamico con T-api è stato estremamente efficace con E. coli e S. aureus, e leggermente meno efficace, ma comunque sufficiente per indurre un’apprezzabile mortalità, in P. aeruginosa. Esperimenti analoghi, eseguiti trattando i batteri con la porfirina oppure l’apidaecina da sole, oppure con le due insieme ma non coniugate, non hanno causato alcuna mortalità in E. coli e P. aeruginosa. In S. aureus, invece, si è riscontrata una marcata mortalità in seguito al trattamento con cTPP e luce, ma comunque minore di quella ottenuta con T-api. Quindi, ho dimostrato che la coniugazione di un peptide antimicrobico con una molecola fotosensibilizzante può portare alla sintesi di agenti antimicrobici estremamente efficaci, e con uno spettro d’azione superiore rispetto a quelli dei suoi singoli componenti.
Photodynamic therapy and cationic antimicrobial peptides: strategies to overcome bacterial resistance to antibiotics
DOSSELLI, RYAN
2010
Abstract
cIl forte aumento, a livello mondiale, del fenomeno della resistenza agli antibiotici richiede lo sviluppo di nuove strategie antimicrobiche, basate su meccanismi d’azione diversi da quelli degli antibiotici, per combattere le infezioni batteriche. Due delle strategie più promettenti in quest’ottica sono la terapia fotodinamica (PDT) e l’utilizzo di peptidi cationici antimicrobici (CAMPs). Durante il mio dottorato di ricerca ho studiato alcuni aspetti peculiari di entrambe queste strategie, in due linee di studio che alla fine sono state riunite. Nella prima linea di ricerca, focalizzata sulla PDT con porfirine cationiche, ho studiato quale impatto abbiano alcune condizioni sperimentali sull’efficienza di fotosensibilizzazione di batteri, ed ho identificato alcuni dei bersagli molecolari della loro azione su Staphylococcus aureus. Nella seconda linea di ricerca ho studiato il meccanismo d’azione di un particolare CAMP, l’apidaecina 1b, che ho successivamente coniugato con un fotosensibilizzatore allo scopo di creare un nuovo, più efficiente, agente antimicrobico. La PDT utilizza molecole capaci di assorbire la luce visibile, dette fotosensibilizzatori (PS), che, quando illuminate in presenza di ossigeno molecolare, generano specie reattive dell’ossigeno, che hanno un forte effetto citotossico su cellule batteriche precedentemente incubate col PS stesso. Nella prima fase di studio ho valutato l’effetto di alcune condizioni sperimentali sulla capacità del PS di legarsi alla cellula batterica e, di conseguenza, sull’efficienza di fotoinattivazione di batteri. In particolare sono stati valutati gli effetti di lavaggi effettuati dopo l’incubazione dei batteri con il PS, nonché della presenza di diversi cationi nel mezzo di incubazione. In questo studio è stata utilizzata una porfirina dicationica, la cui efficienza nella fotoinattivazione di Staphylococcus aureus ed Escherichia coli è stata misurata mediante irradiamento con dose crescenti di luce blu. L’irradiamento è stato effettuato sia lasciando nella sospensione batterica il PS non legato alle cellule che rimuovendolo mediante uno o quattro lavaggi. Questi lavaggi hanno prodotto effetti completamente opposti nei due microrganismi oggetto di studio: da un lato si è riscontrato un forte aumento dell’efficienza di fotosensibilizzazione di E. coli, dall’altro un decremento di quella di S. aureus. L’aumento dell’efficienza di fotosensibilizzazione in E. coli è probabilmente dovuto al fatto che, nel tempo necessario per effettuare i lavaggi, la frazione di porfirina legata alle cellule batteriche riesce a raggiungere siti cellulari più sensibili alla PDT. Il fatto che si sia utilizzato un tempo di incubazione molto breve (5 minuti) rende molto plausibile questa ipotesi. L’aggiunta di un catione monovalente (Na+) nel mezzo di irradiamento non ha causato alcuna variazione dell’efficienza di fotosensibilizzazione di S. aureus, che invece è stata fortemente incrementata da quella di cationi bivalenti (Ca2+ e Mg2+). Al contrario, la fotosensibilizzazione di E. coli è stata sensibilmente diminuita in presenza di cationi (sia mono che bivalenti), con un effetto più marcato in assenza di lavaggi. In ogni caso, utilizzando questa porfirina dicationica gli effetti prodotti sia dai lavaggi che dalla presenza di cationi sono stati minori di quelli riscontrati in precedenza con altri fotosensibilizzatori. Per l’identificazione di alcune delle proteine che sono bersaglio della PDT è stato scelto un approccio di tipo proteomico, comprendente la separazione con elettroforesi bidimensionale dei lisati batterici e l’identificazione di proteine con tecniche di spettrometria di massa. Al fine di ottenere un’analisi il più possibile dettagliata, sono stati valutati i cambiamenti nel profilo proteomico di S. aureus causati dalla PDT con due diverse porfirine cationiche. Per ciascuna di queste porfirine, che differiscono notevolmente nell’attività fotosensibilizzante, sono stati selezionati, sulla base della differente mortalità indotta in sospensioni di S. aureus, due trattamenti fotodinamici: uno subletale, che consente una sopravvivenza dal 60 all’80% dei batteri, e l’altro più forte, che consente la sopravvivenza di circa l’1% dei batteri. Le mappe bidimensionali ottenute da lisati proteici di batteri non sottoposti a PDT sono quindi state confrontate, mediante l’utilizzo dell’apposito software Proteomweaver, con quelle ottenute da lisati di batteri sottoposti ai diversi trattamenti fotodinamici. Tutte le proteine delle mappe bidimensionali che, a seguito dell’analisi, hanno mostrato di essere state significativamente modificate dai trattamenti fotodinamici, sono quindi state identificate tramite spettrometria di massa (MALDI-TOF/TOF). Sulla base delle loro funzioni nella cellula, le proteine identificate sono quindi state assegnate a diverse classi funzionali, al fine di scoprire quali funzioni cellulari venissero maggiormente colpite dalla PDT. Tra le 265 proteine globalmente identificate dall’analisi con Proteomweaver, 70 hanno mostrato significative variazioni di intensità dovute ai trattamenti fotodinamici; tra queste, la maggioranza era composta da proteine implicate nella risposta allo stress ossidativo, nel metabolismo energetico e nella captazione di zuccheri. Comparando gli effetti della PDT tra le due porfirine, si è scoperto che i livelli di intensità di molte proteine sono stati modificati da entrambe, ed in genere nella stessa direzione. Particolarmente interessante è stata la scoperta che le tipologie di modifica del profilo proteomico di S. aureus, causate dai trattamenti fotodinamici, non sono compatibili con le risposte ad agenti ossidanti (come per esempio perossidi o superossidi) da parte della cellula batterica; questo suggerisce che la PDT ha come bersagli specifiche proteine. I risultati ottenuti sono di particolare importanza perché, approfondendo la conoscenza del meccanismo d’azione della PDT, potrebbero aiutare nel disegno di nuovi fotosensibilizzatori più efficienti di quelli attualmente in uso. Nella seconda linea di ricerca ho studiato alcune proprietà legate all’attività antimicrobica ed alla capacità di ingresso nella cellula batterica di un peptide cationico antimicrobico, l’apidaecina 1b. I risultati ottenuti da questo studio hanno quindi permesso di utilizzare l’apidaecina stessa come vettore di altre molecole, coniugandola con una porfirina al fine di ottenere un nuovo agente antimicrobico, con un maggior spettro d’azione rispetto ai suoi singoli costituenti. L’apidecina 1b è un piccolo (soli 18 amminoacidi) peptide che viene molto studiato per via di alcune sue particolari capacità, tra cui una buona inibizione della crescita di batteri Gram (-) e, soprattutto, un’eccezionale abilità nell’entrare nelle cellule mediante un meccanismo che non comporta la formazione di pori nelle membrane. Inoltre, è stato dimostrato che l’apidaecina non presenta tossicità per cellule eucariotiche a concentrazioni che sono invece letali per i batteri. Allo scopo di studiare il meccanismo d’azione dell’apidaecina sono stati sintetizzati degli ibridi peptide-peptoide dell’apidaecina stessa, nei quali ognuno dei tre residui di arginina è stato sostituito con residui di N-(3-guanidinopropyl)-glicina, e si sono quindi valutate le MIC (minima concentrazione inibente) di ognuno degli analoghi nei confronti di diversi batteri. Né l’apidaecina né i suoi ibridi peptide-peptoide hanno mostrato attività antimicrobica nei confronti di Staphylococcus aureus e Pseudomonas aeruginosa. Invece, in Escherichia coli si è potuta osservare una lieve diminuzione del valore della MIC, rispetto al peptide naturale, con gli ibridi sostituiti nelle posizioni 4 e 12, mentre l’attività antimicrobica veniva completamente persa nell’ibrido sostituito nella posizione 17. Questi risultati suggeriscono che l’arginina in posizione 17 possa giocare un ruolo particolarmente importante nel meccanismo di traslocazione dell’apidaecina all’interno della cellula. Quindi, sia l’apidaecina che i suoi ibridi peptide-peptoide sono stati marcati mediante legame con una molecola di fluoresceina, allo scopo di monitorarne la capacità di legame con la cellula batterica mediante tecniche di microscopia di fluorescenza e citometria di flusso. Sfortunatamente, la marcatura con la fluoresceina ha causato la perdita dell’attività antimicrobica e di gran parte della capacità di legarsi ed entrare nella cellula batterica sia dell’apidaecina che dei suoi ibridi. Questo effetto è dovuto principalmente alla massa aggiuntiva portata dalla fluoresceina ai peptidi. Tuttavia, si è osservato che, a differenza degli altri, l’ibrido peptide-peptoide con la sostituzione dell’arginina 17 non presentava alcuna capacità di legarsi alle cellule batteriche. Questo risultato ha confermato sia l’importanza di questa arginina per la capacità antimicrobica dell’apidaecina che, in generale, l’importanza del dominio C-terminale sulla capacità di legame e di ingresso nella cellula batterica. Il coniugato (che è stato chiamato T-api), ottenuto dall’unione di una porfirina anionica (monocarbossi-tetrafenil porfirina, cTPP) con il dominio N-terminale dell’apidaecina 1b, non ha mostrato alcuna attività antimicrobica al buio. Tuttavia, in seguito all’irradiamento con luce blu, T-api si è dimostrato un efficiente fotosensibilizzatore, con un’efficienza fortemente dipendente dalle diverse tipologie di batteri considerate. In particolare, il trattamento fotodinamico con T-api è stato estremamente efficace con E. coli e S. aureus, e leggermente meno efficace, ma comunque sufficiente per indurre un’apprezzabile mortalità, in P. aeruginosa. Esperimenti analoghi, eseguiti trattando i batteri con la porfirina oppure l’apidaecina da sole, oppure con le due insieme ma non coniugate, non hanno causato alcuna mortalità in E. coli e P. aeruginosa. In S. aureus, invece, si è riscontrata una marcata mortalità in seguito al trattamento con cTPP e luce, ma comunque minore di quella ottenuta con T-api. Quindi, ho dimostrato che la coniugazione di un peptide antimicrobico con una molecola fotosensibilizzante può portare alla sintesi di agenti antimicrobici estremamente efficaci, e con uno spettro d’azione superiore rispetto a quelli dei suoi singoli componenti.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Ryan_Dosselli.pdf
accesso solo da BNCF e BNCR
Dimensione
4.46 MB
Formato
Adobe PDF
|
4.46 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/111003
URN:NBN:IT:UNIPD-111003