Metodi non intrusivi basati sull’espansione della risposta di un dato sistema nello spazio dei parametri (Chaos expansion methods) consentono di risolvere equazioni differenziali stocastiche con un numero di soluzioni deterministiche minori rispetto ad approcci tradizionali alla Monte Carlo con campionamento classico o stratificato. In tale ambito gli sforzi di ricerca odierni sono volti allo sviluppo di metodologie atte alla riduzione del costo computazionale in problemi caratterizzati da alta dimensionalitá (numero significativo di variabili aleatorie in input) ed al trattamento di problemi con risposta discontinua nello spazio dei parametri. La ricerca condotta si é concentrata sull’utilizzo di recenti tecniche di Compressive Sampling per la minimizzazione del numero di soluzioni deterministiche necessarie alla ricostruzione di risposte dotate di sparsitá secondo un pre-definito dizionario di basi. Inoltre, tecniche di approssimazione multi-risoluzione sono state estese a metodologie non intrusive di propagazione dell’incertezza. Infine, tecniche di Importance Sampling sono state utilizzate per determinare in modo adattativo l’ubicazione di nuovi samples al fine di cogliere le scale maggiormente importanti nelle risposte approssimate. Le metodologie approfondite ed implementate nell’ambito della ricerca svolta sono state applicate ad un insieme di funzioni analitiche, sistemi descritti da equazioni differenziali stocastiche, sistemi dinamici con risposte caratterizzate da elevati gradienti o discontinuitá, problemi ingegneristici con particolare riferimento all’ottimizzazione robusta della performance aerodinamica di profili per pale eoliche e sistemi passivi di smorzamento delle vibrazioni operanti sotto incertezza. Vengono inoltre presentate metodologie atte a ripristinare doti di conservazione di massa in flussi numerici e sperimentali.
Redundant Multiresolution Uncertainty Propagation
SCHIAVAZZI, DANIELE
2013
Abstract
Metodi non intrusivi basati sull’espansione della risposta di un dato sistema nello spazio dei parametri (Chaos expansion methods) consentono di risolvere equazioni differenziali stocastiche con un numero di soluzioni deterministiche minori rispetto ad approcci tradizionali alla Monte Carlo con campionamento classico o stratificato. In tale ambito gli sforzi di ricerca odierni sono volti allo sviluppo di metodologie atte alla riduzione del costo computazionale in problemi caratterizzati da alta dimensionalitá (numero significativo di variabili aleatorie in input) ed al trattamento di problemi con risposta discontinua nello spazio dei parametri. La ricerca condotta si é concentrata sull’utilizzo di recenti tecniche di Compressive Sampling per la minimizzazione del numero di soluzioni deterministiche necessarie alla ricostruzione di risposte dotate di sparsitá secondo un pre-definito dizionario di basi. Inoltre, tecniche di approssimazione multi-risoluzione sono state estese a metodologie non intrusive di propagazione dell’incertezza. Infine, tecniche di Importance Sampling sono state utilizzate per determinare in modo adattativo l’ubicazione di nuovi samples al fine di cogliere le scale maggiormente importanti nelle risposte approssimate. Le metodologie approfondite ed implementate nell’ambito della ricerca svolta sono state applicate ad un insieme di funzioni analitiche, sistemi descritti da equazioni differenziali stocastiche, sistemi dinamici con risposte caratterizzate da elevati gradienti o discontinuitá, problemi ingegneristici con particolare riferimento all’ottimizzazione robusta della performance aerodinamica di profili per pale eoliche e sistemi passivi di smorzamento delle vibrazioni operanti sotto incertezza. Vengono inoltre presentate metodologie atte a ripristinare doti di conservazione di massa in flussi numerici e sperimentali.File | Dimensione | Formato | |
---|---|---|---|
Schiavazzi_Daniele_Tesi.pdf
accesso aperto
Dimensione
8.42 MB
Formato
Adobe PDF
|
8.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/111046
URN:NBN:IT:UNIPD-111046