L’argomento principale della Tesi `e lo studio delle isole magnetiche, al bordo di una macchina tokamak, create per mezzo di perturbazioni magnetiche risonanti (RMP), e della relativa risposta elettrostatica del plasma (flussi e campo elettrico radiale Er). I risultati sono stati confrontati con la fenomenologia e la teoria gi`a conosciute nell’ambito del chaos magnetico al bordo di una macchina con configurazione magnetica reversed-field pinch (RFP). In particolare, l’analisi `e stata eseguita sul tokamak TEXTOR ed il confronto fatto con il RFP RFX-mod. Per tale studio, si ´e utilizzato il codice hamiltoniano di centro guida Orbit, che permette di eseguire simulazioni di trasporto di particelle e ricostruire la topologia magnetica. In primis, Orbit ´e stato confrontato con il codice volume-preserving Nemato [24], allo scopo di validare la ricostruzione della topologia magnetica di Orbit, al bordo di TEXTOR e RFX-mod. Nel limite di bassa energia, Orbit pu`o essere utilizzato per tracciare le linee di campo magnetico, in modo simile ai codici field-line tracing, come Nemato. Nemato integra flussi solenoidali per fluidi incomprimibili, conservando automaticamente il volume [47]. Si vuole verificare quanto accurata sia la descrizione di un campo magnetico da parte di Orbit, che pur essendo un codice hamiltoniano, usa un integratore Runge-Kutta (RK) anzich´e risolvere in modo completamente implicito le equazioni del moto (come fa Nemato). Inoltre, in Orbit le perturbazioni sono descritte mediante un campo scalare , cos`ı che ~B = r × ~B0, dove B0 `e il campo all’equilibrio. I due codici sono validati su una struttura composta da isole q = 0 che caratterizzano la configurazione multy helicity (MH) nel RFP. I dati in ingresso, per entrambi i codici, provengono da una simulazione MHD, visco-resistive in geometria cilindrica 3D non lineare, del codice SpeCyl [20]. Inizialmente il confronto `e stato eseguito su una semplice configurazione con uno solo modo non nullo nello spettro delle perturbazioni, verificando che entrambi i codici creano linee di campo che seguono le superfici di flusso calcolate analiticamente. Il confronto `e quindi esteso alla configurazioni caotica (con tutti i modi). Il risultato `e che la rappresenzione di Orbit e l’integratore RK, non comportano alcuna differenza apprezzabile nelle mappe di Poincar´e e nel calcolo della lunghezza di correlazione. Nella seconda parte della Tesi, allo scopo di disegnare un quadro coix mune del trasporto di particelle nel tokamak RMP e nel RFP, simulazioni di trasporto di particelle (ioni ed elettroni) sono state eseguite, seguendo le analisi storicamente effettuate in RFX-mod [123]. In particolare, due configurazioni magnetiche in TEXTOR sono state considerate: m/n = 12/4 e 3/1. Il codice Orbit `e stato adattato ricostruendo l’equilibrio magnetico di TEXTOR (equilibrio circulare con pressione [144]) e le perturbazioni, sulla base di una formula analitica sviluppata a TEXTOR. Le mappe di Poincar´e create con Orbit mostrano le caratteristiche base del bordo caotico di TEXTOR, come la catena interna di isole, le isole remnant, ed i tubi di flusso laminare circondati da una zona ergodica (ergodic fingers), consistentemente con lavori precedenti effettuati a TEXTOR. Le propriet`a delle suddette strutture sono evidenziate con simulazioni di lunghezza di connessione, Lk(r, ): mentre gli ioni, avendo un raggio di Larmor pi`u grande, sono debolmente influenzati dalla topologia magnetica, le traiettorie degli elettroni sono vincolate alle linee di campo. L’andamento di Lk comporta una caratteristica modulazione di Er con valori positivi nelle zone con Lk 0 (cio`e i tubi di flusso laminare tra le isole remnant e le catena di isole interna). Successivamente, i coefficienti di diffusione ionici ed elettronici (Di and De, rispettivamente), sono stati calcolati lungo l’intervallo poloidale tra l’Opoint (OP) e l’X-point (XP) dell’isola remnant m/n = 4/1, per valutare localmente il trasporto radiale di particelle. Il risultato mostra che Di `e circa costante lungo l’intervallo e quasi neoclassico, mentre De `e pi`u grande (4 ÷ 40 m2/s), e fortemente modulato (pi`u grande nel XP, pi`u piccolo nel OP), consistentemente con le mappe di Lk. Infine, una formulazioni 3D, analitica del campo ambipolare nella configurazione 3/1 `e stata sviluppata a partire dalla geometria dell’isola m/n = 4/1, che bilancia i flussi ionici ed elettronici al bordo. Il risultato `e confrontato con misure di potenziale di plasma nell’isola m/n = 4/1 e con le analisi al bordo di RFX-mod. In RFXmod Orbit predice una buca di potenziale in prossimit`a del OP dell’isola principale (m/n = 0/1), mentre le misure mostrano che la buca sia vicino al XP. In TEXTOR le misure mostrano che la buca di potenziale in corrispondenza del XP dell’isola m/n = 4/1, cio`e la regione con grande De, consistentemente con i risultati di Orbit. La differenza tra RFX e TEXTOR pu`o essere dovuta alla dipendenza dalle collisioni (in RFX si ha alta collisionalit`a, contrariamente a TEXTOR); a una diversa quantit`a di caos tra RFX-mod e TEXTOR; oppure ad una interazione plasma-parete pi`u pronunciata in RFX-mod. Il messaggio principale delle Tesi `e che gli RMPs nei tokamak, anche se indotti come perturbazioni statiche, sono capaci di produrre un campo elettrico radiale Er, la cui struttura `e la stessa della topologia magnetica al bordo. Tale struttura pu`o essere riprodotta in ottima approssimazione da Orbit. Il confronto con RFX dimostra che gli effetti collisionali possono essere importanti nel determinare ampiezza e fase di questo potenziale elettrostatico.
Flow and transport in the edge of fusion devices
CIACCIO, GIOVANNI
2014
Abstract
L’argomento principale della Tesi `e lo studio delle isole magnetiche, al bordo di una macchina tokamak, create per mezzo di perturbazioni magnetiche risonanti (RMP), e della relativa risposta elettrostatica del plasma (flussi e campo elettrico radiale Er). I risultati sono stati confrontati con la fenomenologia e la teoria gi`a conosciute nell’ambito del chaos magnetico al bordo di una macchina con configurazione magnetica reversed-field pinch (RFP). In particolare, l’analisi `e stata eseguita sul tokamak TEXTOR ed il confronto fatto con il RFP RFX-mod. Per tale studio, si ´e utilizzato il codice hamiltoniano di centro guida Orbit, che permette di eseguire simulazioni di trasporto di particelle e ricostruire la topologia magnetica. In primis, Orbit ´e stato confrontato con il codice volume-preserving Nemato [24], allo scopo di validare la ricostruzione della topologia magnetica di Orbit, al bordo di TEXTOR e RFX-mod. Nel limite di bassa energia, Orbit pu`o essere utilizzato per tracciare le linee di campo magnetico, in modo simile ai codici field-line tracing, come Nemato. Nemato integra flussi solenoidali per fluidi incomprimibili, conservando automaticamente il volume [47]. Si vuole verificare quanto accurata sia la descrizione di un campo magnetico da parte di Orbit, che pur essendo un codice hamiltoniano, usa un integratore Runge-Kutta (RK) anzich´e risolvere in modo completamente implicito le equazioni del moto (come fa Nemato). Inoltre, in Orbit le perturbazioni sono descritte mediante un campo scalare , cos`ı che ~B = r × ~B0, dove B0 `e il campo all’equilibrio. I due codici sono validati su una struttura composta da isole q = 0 che caratterizzano la configurazione multy helicity (MH) nel RFP. I dati in ingresso, per entrambi i codici, provengono da una simulazione MHD, visco-resistive in geometria cilindrica 3D non lineare, del codice SpeCyl [20]. Inizialmente il confronto `e stato eseguito su una semplice configurazione con uno solo modo non nullo nello spettro delle perturbazioni, verificando che entrambi i codici creano linee di campo che seguono le superfici di flusso calcolate analiticamente. Il confronto `e quindi esteso alla configurazioni caotica (con tutti i modi). Il risultato `e che la rappresenzione di Orbit e l’integratore RK, non comportano alcuna differenza apprezzabile nelle mappe di Poincar´e e nel calcolo della lunghezza di correlazione. Nella seconda parte della Tesi, allo scopo di disegnare un quadro coix mune del trasporto di particelle nel tokamak RMP e nel RFP, simulazioni di trasporto di particelle (ioni ed elettroni) sono state eseguite, seguendo le analisi storicamente effettuate in RFX-mod [123]. In particolare, due configurazioni magnetiche in TEXTOR sono state considerate: m/n = 12/4 e 3/1. Il codice Orbit `e stato adattato ricostruendo l’equilibrio magnetico di TEXTOR (equilibrio circulare con pressione [144]) e le perturbazioni, sulla base di una formula analitica sviluppata a TEXTOR. Le mappe di Poincar´e create con Orbit mostrano le caratteristiche base del bordo caotico di TEXTOR, come la catena interna di isole, le isole remnant, ed i tubi di flusso laminare circondati da una zona ergodica (ergodic fingers), consistentemente con lavori precedenti effettuati a TEXTOR. Le propriet`a delle suddette strutture sono evidenziate con simulazioni di lunghezza di connessione, Lk(r, ): mentre gli ioni, avendo un raggio di Larmor pi`u grande, sono debolmente influenzati dalla topologia magnetica, le traiettorie degli elettroni sono vincolate alle linee di campo. L’andamento di Lk comporta una caratteristica modulazione di Er con valori positivi nelle zone con Lk 0 (cio`e i tubi di flusso laminare tra le isole remnant e le catena di isole interna). Successivamente, i coefficienti di diffusione ionici ed elettronici (Di and De, rispettivamente), sono stati calcolati lungo l’intervallo poloidale tra l’Opoint (OP) e l’X-point (XP) dell’isola remnant m/n = 4/1, per valutare localmente il trasporto radiale di particelle. Il risultato mostra che Di `e circa costante lungo l’intervallo e quasi neoclassico, mentre De `e pi`u grande (4 ÷ 40 m2/s), e fortemente modulato (pi`u grande nel XP, pi`u piccolo nel OP), consistentemente con le mappe di Lk. Infine, una formulazioni 3D, analitica del campo ambipolare nella configurazione 3/1 `e stata sviluppata a partire dalla geometria dell’isola m/n = 4/1, che bilancia i flussi ionici ed elettronici al bordo. Il risultato `e confrontato con misure di potenziale di plasma nell’isola m/n = 4/1 e con le analisi al bordo di RFX-mod. In RFXmod Orbit predice una buca di potenziale in prossimit`a del OP dell’isola principale (m/n = 0/1), mentre le misure mostrano che la buca sia vicino al XP. In TEXTOR le misure mostrano che la buca di potenziale in corrispondenza del XP dell’isola m/n = 4/1, cio`e la regione con grande De, consistentemente con i risultati di Orbit. La differenza tra RFX e TEXTOR pu`o essere dovuta alla dipendenza dalle collisioni (in RFX si ha alta collisionalit`a, contrariamente a TEXTOR); a una diversa quantit`a di caos tra RFX-mod e TEXTOR; oppure ad una interazione plasma-parete pi`u pronunciata in RFX-mod. Il messaggio principale delle Tesi `e che gli RMPs nei tokamak, anche se indotti come perturbazioni statiche, sono capaci di produrre un campo elettrico radiale Er, la cui struttura `e la stessa della topologia magnetica al bordo. Tale struttura pu`o essere riprodotta in ottima approssimazione da Orbit. Il confronto con RFX dimostra che gli effetti collisionali possono essere importanti nel determinare ampiezza e fase di questo potenziale elettrostatico.File | Dimensione | Formato | |
---|---|---|---|
ciaccio_giovanni_tesi.pdf
accesso aperto
Dimensione
22.44 MB
Formato
Adobe PDF
|
22.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/111062
URN:NBN:IT:UNIPD-111062