Nell’ultimo decennio un sempre più crescente interesse è stato rivolto nei confronti del riconoscimento selettivo dei quartetti di guanina (G-quadruplex), strutture supramolecolari in grado di auto-assemblarsi in condizioni fisiologiche da oligonucleotidi ricchi di residui guaninici. La ragione di ciò risiede nel fatto che tali strutture sembrano agire come regolatori di processi a livello cellulare. Infatti, esistono svariati esempi in cui, soprattutto in vitro, molecole o anticorpi in grado di riconoscere e stabilizzare quartetti di guanina influenzino drasticamente il processo biologico in cui l’oligonucleotide stesso è implicato. L’inibizione indiretta della telomerasi e gli studi dell’effetto sulla trascrizione di oncogeni ne rappresentano le applicazioni più importati, assieme ai più recenti effetti sulla traduzione di RNA. Ciò rende G-quadruplex un vero e proprio target terapeutico per lo sviluppo di nuove terapie antitumorali. Questo lavoro nasce con lo scopo di creare una nuova generazione di leganti di G-4 che manifestino proprietà alchilanti attivabili mediante protocolli biocompatibili. Proprietà alchilanti non intrinseche, ma attivabili attraverso modifiche chimiche e fisiche, permetterebbero un controllo temporale del processo di alchilazione. Tali molecole agirebbero pertanto da veri e propri dispositivi molecolari preconcentrandosi sul target e stabilizzando il complesso attraverso interazioni non covalenti per poi, mediante attivazione, generare la specie alchilante così da ancorare fortemente la molecola all’oligonucleotide. Queste caratteristiche renderebbero il danno indotto irreversibile o non riparabile dai comuni processi cellulari, aumentando notevolmente l’efficacia di azione in termini di effetti farmaco-biologici. L’idea pertanto è quella di sfruttare le proprietà di riconoscimento di alcuni tra i leganti noti in letteratura equipaggiandoli, però, con una specie alchilante silente, il cui rilascio può essere controllato temporalmente mediante azione fisica o chimica. Questo nuovo tipo di molecole rappresenterebbe pertanto una classe di leganti irreversibili di G-4, mai progettata in precedenza. Per far ciò la molecola da sintetizzare deve possedere: 1) una superficie aromatica estesa ed elettron-povera che conferisca le proprietà di riconoscimento molecolare attraverso interazioni di π stacking con il target biologico. 2) un precursore di una specie alchilante che presenti una scarsa o assente reattività intrinseca modulabile mediante attivazione, possibilmente compatibile con condizioni fisiologiche. 3) una porzione molecolare facilmente modificabile per interazioni con il substrato o per attivazione chimica, che funga da “grilletto” della reattività del precursore alchilante. Nella fattispecie ci siamo concentrati sulla derivatizzazione di strutture, che dalla letteratura risultano dei buoni leganti di G-4, come Naftalendiimidi (NDI) o Naftalimmidi (NI), variamente sostituite con dei precursori di alchilanti tipo chinone metide (QM). Questi ultimi risultano particolarmente adatti a questo scopo in quanto posso essere generati da precursori molto stabili, attraverso dei protocolli di attivazione biocompatibili. Soprattutto risultano elettrofili la cui reattività è modulabile variando la natura elettronica del precursore stesso. In questo lavoro di tesi descriviamo la sintesi, la reattività e gli studi di interazione con oligonucleotidi ripegabili a strutture tipo G-4, delle molecole progettate e preparate nel corso del dottorato di ricerca. Particolare enfasi verrà posta sull’effetto indotto dal danno da alchilazione osservato e sulle potenziali applicazioni sia terapeutiche che diagnostiche. Inoltre descriveremo brevemente un progetto parallelo svolto durante il periodo trascorso all’Università di Cambridge, presso il gruppo di ricerca del Prof. Balasubramanian.
New Molecular Devices for Selective Structural Modifications of G-Quadruplex Folded Oligonucleotides
DI ANTONIO, MARCO
2011
Abstract
Nell’ultimo decennio un sempre più crescente interesse è stato rivolto nei confronti del riconoscimento selettivo dei quartetti di guanina (G-quadruplex), strutture supramolecolari in grado di auto-assemblarsi in condizioni fisiologiche da oligonucleotidi ricchi di residui guaninici. La ragione di ciò risiede nel fatto che tali strutture sembrano agire come regolatori di processi a livello cellulare. Infatti, esistono svariati esempi in cui, soprattutto in vitro, molecole o anticorpi in grado di riconoscere e stabilizzare quartetti di guanina influenzino drasticamente il processo biologico in cui l’oligonucleotide stesso è implicato. L’inibizione indiretta della telomerasi e gli studi dell’effetto sulla trascrizione di oncogeni ne rappresentano le applicazioni più importati, assieme ai più recenti effetti sulla traduzione di RNA. Ciò rende G-quadruplex un vero e proprio target terapeutico per lo sviluppo di nuove terapie antitumorali. Questo lavoro nasce con lo scopo di creare una nuova generazione di leganti di G-4 che manifestino proprietà alchilanti attivabili mediante protocolli biocompatibili. Proprietà alchilanti non intrinseche, ma attivabili attraverso modifiche chimiche e fisiche, permetterebbero un controllo temporale del processo di alchilazione. Tali molecole agirebbero pertanto da veri e propri dispositivi molecolari preconcentrandosi sul target e stabilizzando il complesso attraverso interazioni non covalenti per poi, mediante attivazione, generare la specie alchilante così da ancorare fortemente la molecola all’oligonucleotide. Queste caratteristiche renderebbero il danno indotto irreversibile o non riparabile dai comuni processi cellulari, aumentando notevolmente l’efficacia di azione in termini di effetti farmaco-biologici. L’idea pertanto è quella di sfruttare le proprietà di riconoscimento di alcuni tra i leganti noti in letteratura equipaggiandoli, però, con una specie alchilante silente, il cui rilascio può essere controllato temporalmente mediante azione fisica o chimica. Questo nuovo tipo di molecole rappresenterebbe pertanto una classe di leganti irreversibili di G-4, mai progettata in precedenza. Per far ciò la molecola da sintetizzare deve possedere: 1) una superficie aromatica estesa ed elettron-povera che conferisca le proprietà di riconoscimento molecolare attraverso interazioni di π stacking con il target biologico. 2) un precursore di una specie alchilante che presenti una scarsa o assente reattività intrinseca modulabile mediante attivazione, possibilmente compatibile con condizioni fisiologiche. 3) una porzione molecolare facilmente modificabile per interazioni con il substrato o per attivazione chimica, che funga da “grilletto” della reattività del precursore alchilante. Nella fattispecie ci siamo concentrati sulla derivatizzazione di strutture, che dalla letteratura risultano dei buoni leganti di G-4, come Naftalendiimidi (NDI) o Naftalimmidi (NI), variamente sostituite con dei precursori di alchilanti tipo chinone metide (QM). Questi ultimi risultano particolarmente adatti a questo scopo in quanto posso essere generati da precursori molto stabili, attraverso dei protocolli di attivazione biocompatibili. Soprattutto risultano elettrofili la cui reattività è modulabile variando la natura elettronica del precursore stesso. In questo lavoro di tesi descriviamo la sintesi, la reattività e gli studi di interazione con oligonucleotidi ripegabili a strutture tipo G-4, delle molecole progettate e preparate nel corso del dottorato di ricerca. Particolare enfasi verrà posta sull’effetto indotto dal danno da alchilazione osservato e sulle potenziali applicazioni sia terapeutiche che diagnostiche. Inoltre descriveremo brevemente un progetto parallelo svolto durante il periodo trascorso all’Università di Cambridge, presso il gruppo di ricerca del Prof. Balasubramanian.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Dottorato_MDA_final_(to_print).pdf
accesso aperto
Dimensione
5.24 MB
Formato
Adobe PDF
|
5.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/111085
URN:NBN:IT:UNIPD-111085