Introduzione: il cuore è innervato principalmente dal sistema nervoso simpatico coinvolto nella risposta ‘lotta o fuga’. I neuroni simpatici (NS) sono collocati nei gangli stellato e cervicale superiore e mediano il principale meccanismo fisiologico per aumentare la frequenza e la forza di contrazione cardiaca attraverso il rilascio di noradrenalina. Recentemente abbiamo riportato che i NS regolano il trofismo cardiaco attraverso la stimolazione dei recettori β2 adrenergici e la repressione delle ubiquitina ligasi muscolo specifiche (ovvero MuRF1 e Atrogin1), ma non si conoscono gli effetti dei NS sui sarcomeri. Il fattore di crescita neuronale (NGF) è rilasciato dal miocardio e controlla l’innervazione cardiaca da parte dei NS dopo il legame al suo recettore (TrkA) ed è necessario per la sopravvivenza neuronale. Di conseguenza l'accoppiamento tra neuroni simpatici e il cuore riguarda una comunicazione bidirezionale: il cuore ha bisogno di essere accoppiato ai NS per ricevere lo stimolo noradrenergico per un aumento efficiente della contrazione del cuore, e, viceversa, i NS sono accoppiati al cuore per ricevere lo stimolo neurotrofico che è necessario per la sopravvivenza dei neuroni. Tuttavia, non si conosce se è presente un’interazione cellula-cellula nell’accoppiamento tra cuore e neuroni. La giunzione neuromuscolare (GNM) costituisce un’interazione tra il muscolo e il neurone, ben descritta sia in termini di funzione che di struttura. E’ caratterizzata da ispessimenti della membrana, accumulo dei recettori acetilcolinergici, ridotto spazio intermembrana (70-50 nm) e rilascio di neurotrofine da parte dei miociti (ad esempio NT3, NT4). Considerando l'interazione tra i NS ed il cuore (giunzione neuro cardiaca, GNC), questo studio ha lo scopo di i) valutare gli effetti della stimolazione anterograda dei NS sulle strutture sarcomeriche, ii) determinare se strutture cellulari specifiche sono presenti a livello del sito di contatto tra NS e cardiomiocita, iii) studiare il ruolo del contatto tra cardiomiociti e neuroni nella segnalazione mediata da NGF. Risultati: Per analizzare i cambiamenti nella struttura del sarcomero, colture di cardiomiociti sono state trattate con stimoli adrenergici (clenbuterolo , fenilefrina e norepinefrina) oppure con HBSS. Poiché la rimozione di nutrienti e la denervazione simpatica agiscono su meccanismi comuni, possiamo fare un parallelismo tra i due stimoli proatrofici sull’alterazione nei sarcomeri. L’incubazione con agonisti adrenergici non ha causato cambiamenti significativi, mentre l’HBSS ha provocato una diminuzione del 41.86% dell’area sarcomerica, suggerendo che la degradazione dei sarcomeri è più veloce rispetto alla loro sintesi. Questo risultato è stato confermato da esperimenti di imaging in tempo reale su CM trasfettati con un costrutto codificante per la RFP-zasp, proteina localizzata nella linea z. Per capire se le proteine sarcomeriche condividono lo stesso destino durante il trattamento con HBSS, sono state effettuate analisi di immunofluorescenza (IF) e western blot (WB). Mentre α actinina e troponina cardiaca (cTn) I hanno mostrato delocalizzazione e degradazione, non sono stati misurati cambiamenti significativi per cTnT in seguito al trattamento con HBSS, suggerendo che le proteine sarcomeriche sono degradate in modi diversi. Per capire quale meccanismo di degradazione delle proteine è coinvolto nello smantellamento dei sarcomeri, abbiamo considerato il sistema autofagico-lisosomale e ubiquitina-proteasoma. Analisi di WB e IF hanno mostrato l'attivazione di entrambi i sistemi in cellule trattate con HBSS. In esperimenti di imaging in tempo reale su cardiomiociti co-trasfettati con costrutti codificanti per RFP-zasp e EGFP-LC3 è stato osservato l’arricchimento di LC3 vicino ai sarcomeri in seguito a deprivazione di nutrienti e siero, suggerendo che l’autofagia potrebbe essere coinvolta nella degradazione dei sarcomeri. Inoltre analisi di IF hanno mostrato una marcatura per l’ubiquitina in corrispondenza della linea M dei sarcomeri in cellule incubate con HBSS, suggerendo che le ubiquitina ligasi potrebbero essere coinvolte nello smantellamento dei sarcomeri. Poiché MuRF1 è un’ubiquitina ligasi muscolo specifica localizzata nella linea M dei sarcomeri e sovraespressa in condizioni di digiuno, abbiamo valutato il suo ruolo nella degradazione delle proteine sarcomeriche. La sua sovraespressione ha provocato un calo dell’area sarcomerica dell’88.57% rispetto ai controlli, mentre il suo silenziamento in cardiomiociti incubati con HBSS non ha impedito la degradazione dei sarcomeri (446.19 ±35.65 vs 144.91 ±26.25μm2 di area sarcomerica nei controlli e nei cardiomiociti silenziati e incubati con HBSS rispettivamente). Questi risultati sono stati confermati da esperimenti di imaging in tempo reale su cardiomiociti trasfettati con RFP-zasp, e suggeriscono che il sistema ubiquitina-proteasoma ed in particolare Murf1 siano coinvolti nella degradazione dei sarcomeri, anche se quello mediato da Murf1 non è l’unico meccanismo. Considerando l'analisi dell’interazione neuro-cardiaca, le analisi di IF su criosezioni di cuore di ratto hanno mostrato densa innervazione del cuore da parte dei neuroni simpatici che sembrano interagire soprattutto con cardiomiociti rispetto ad altri tipi cellulari che sono ben rappresentati nel cuore (ad esempio fibroblasti cardiaci, FC). L’analisi di microscopia elettronica su criosezioni cardiache di topo e ratto e co-culture di NS e cardiomiociti ha mostrato una stretta associazione tra NS e cardiomiociti (con una distanza intermembrana di circa 70nm), accumulo di vescicole di neurotrasmettitore e l'aumento della densità delle proteine di membrana. Questi dati supportano l’esistenza dell'interazione diretta tra i neuroni simpatici e i cardiomiociti. Per analizzare tale interazione, sono state sviluppate co-culture di NS e cardiomiociti, isolando i neuroni simpatici gangliari (NSG) dai gangli cervicali superiori e i cardiomiociti dal cuore dei ratti neonati. Entrambi i tipi cellulari sono stati caratterizzati analizzando in IF la dopamina β-idrossilasi, un marcatore per i neuroni noradrenergici, e l’α actinina, una proteina sarcomerica. Inoltre l’arricchimento di molecole di adesione cellula-cellula, tra cui β catenina e caderina, è stato osservato nei siti di contatto tra processi simpatici e cardiomiociti. Tale arricchimento è stato misurato dopo 2 settimane di co-coltura, suggerendo che co-culture di neuroni e cardiomiociti sono sottoposte a maturazione in funzione del tempo. In co-colture a spot, che consentono di identificare processi in contatto con cardiomiociti o altre cellule cardiache (principalmente fibroblasti), una superficie superiore era occupata dai processi simpatici su cardiomiociti rispetto alle altre cellule cardiache dopo la rimozioni dell’NGF (67.11 ±12.36% vs 3.79 ±1.12% della superficie occupata da processi rispettivamente), sostenendo la presenza di un’interazione preferenziale tra neuroni e cardiomiociti. Questo concetto è ulteriormente supportato dall'osservazione che i neuroni simpatici sviluppano contatti più grandi sui cardiomiociti che su altre cellule cardiache (82.88 ±1.3% di diminuzione della superficie di contatto su altre cellule cardiache rispetto ai cardiomiociti). Nell’insieme, questi dati suggeriscono che i NS stabiliscono un’interazione diretta e stabile con i cardiomiociti e non altre cellule cardiache. Poiché si conosce che il miocardio produce NGF che è necessario per la vitalità dei NS, il ruolo funzionale della GNC è stato valutato considerando il signaling mediato dall’NGF. Questa neurotrofina è sintetizzata dai cardiomiociti, come rilevato dalle analisi di western blot. La trasfezione di siRNA contro l’NGF nei cardiomiociti ha causato una diminuzione del 72.91% nell'espressione della neurotrofina e ridotto la densità neuronale in co-culture di neuroni e cardiomiociti (65.72 ±9.33% di diminuzione della densità neuronale rispetto alla trasfezione con il siRNA di controllo). Questo effetto è stato abolito dall'aggiunta di NGF nel mezzo di coltura e supporta che i neuroni dipendono dall’NGF prodotto dai cardiomiociti. Il legame dell’NGF al suo recettore TrkA consente la sua attivazione, endocitosi e trasporto retrogrado al soma neuronale. Sono stati valutati i movimenti retrogradi del TrkA, monitorando la velocità di trasporto utilizzando tecniche di imaging in tempo reale in co-culture con NS trasfettati con il costrutto TrkA-DsRed2. La velocità dei movimenti retrogradi del TrkA-DsRed2 nei neuroni dipende dalla presenza di NGF (0.32 ±0.06 vs 0.19 ± 0.03μm/s in presenza o assenza di NGF). In co-culture, i movimenti retrogradi erano più alti e più veloce nei processi in contatto con cardiomiociti rispetto ad altre cellule cardiache (0.24 ±0.05 vs 0.11 ±0.02μm/s rispettivamente), sostenendo l'idea che il TrkA è attivato sui cardiomiociti e non sulle altre cellule cardiache e che i neuroni dipendono da NGF derivato da cardiomiociti. Poiché i NS interagiscono con i cardiomiociti e sono dipendenti dall’NGF che questi rilasciano, abbiamo testato l'ipotesi secondo cui la GNC sia necessaria per la sopravvivenza neuronale. Analisi di IF su criosezioni di cuore murino hanno mostrato accumulo di TrkA nel sito di contatto tra il cardiomiocita e il NS, suggerendo che il signaling mediato dall’NGF potrebbe essere coinvolto nella GNC. Inoltre, terreno condizionato da cardiomiociti non ha impedito la morte neuronale (58.21 ±10.42% di diminuzione della densità neuronale rispetto alla co-cultura), suggerendo che l’NGF nel mezzo non sia sufficiente per la sopravvivenza neuronale. Coerentemente abbiamo misurato la concentrazione di NGF nel terreno condizionato da cardiomiociti ed è risultata 1000 volte inferiore rispetto alla dose minima necessaria per la sopravvivenza neuronale (0.13 ±0.08pM). Per valutare se il signaling mediato dall’NGF avviene da una singola cellula all’altra, co-culture sono state co-trasfettate con siRNA contro l’NGF e un plasmide codificante per la GFP che permette l'identificazione dei cardiomiociti silenziati per la neurotrofina. I processi simpatici su cardiomiociti silenziati hanno mostrato una riduzione del 19.56 ±4,01% della zona di contatto neuro-cardiaca rispetto ai cardiomiociti non trasfettati della stessa co-coltura, a sostegno del fatto che il singaling dell’NGF sia localizzato nel sito di contatto tra una cellula e l’altra. Inoltre, le co-colture sono state trasfettate con un costrutto codificante per l’NGF per rilevare l’accumulo della neurotrofina nei processi utilizzando tecniche di IF. Solo i processi in contatto con i cardiomiociti trasfettati contenevano accumuli di NGF, mentre quelli a contatto con cardiomiociti non trasfettati non possedevano NGF (43.43 ±4.17 vs 10.77 ±4.1% dei processi in contatto con cardiomiociti trasfettati e non rispettivamente). Nel loro insieme, questi dati suggeriscono che la presenza dell’interazione neuro-cardiaca sia necessaria per consentire la segnalazione dell’ NGF. Alla fine di questo lavoro abbiamo interferito con il signaling dell’NGF utilizzando diverse strategie. In primo luogo abbiamo utilizzato un anticorpo anti-NGF per sequestrare la neurotrofina dal terreno. In secondo luogo, poiché nelle analisi di microscopia elettronica abbiamo rilevato siti di distanza cellula-cellula di 10nm, abbiamo usato un antagonista del TrkA più piccolo dell’anticorpo, il c(92-96). In terzo luogo abbiamo utilizzato il k252a che ha una dimensione paragonabile a quella del c(92-96) e che è permeabile alle membrane. Considerando che ogni approccio ha funzionato sui NS, causando una significativa riduzione della densità neuronale, solo il k252a è stato in grado di ridurre la densità neuronale in co-colture (73.24 ±4.18% di diminuzione della densità neuronale media rispetto al controllo), suggerendo che la GNC è un microambiente isolato protetto dalla diffusione. Poiché il k252a ha causato la riduzione neuronale in co-colture, abbiamo usato questo inibitore per stimare la concentrazione di NGF nel sito di contatto, incubando i neuroni da soli con k252a e NGF in concentrazioni crescenti. La concentrazione stimata è stata di 1.4 ±0.03nM, 3.5 volte superiore alla dose minima necessaria per la sopravvivenza neuronale, supportando che la GNC è caratterizzata da un'alta concentrazione di NGF. Conclusioni: Nell’insieme, i nostri risultati suggeriscono che i neuroni simpatici stabiliscono un’interazione diretta con i cardiomiociti e che dipendono dall’NGF derivato dai cardiomiociti. Inoltre, il signaling mediato dall’NGF necessita di questa interazione diretta che facilita l’attivazione del TrkA grazie allo sviluppo di un microdominio isolato e caratterizzato da una elevata concentrazione di NGF e dall’arricchimento del TrkA. Infine, lo smantellamento dei sarcomeri comporta l'attivazione dei sistemi di degradazione delle proteine e, in particolare, dell’ubiquitina ligasi MuRF1, la cui modulazione da parte dei NS può modificare la struttura del sarcomero

The neuro-cardiac junction: the hotline for bidirectional dialogue between neurons and cardiomyocytes

FRANZOSO, MAURO
2014

Abstract

Introduzione: il cuore è innervato principalmente dal sistema nervoso simpatico coinvolto nella risposta ‘lotta o fuga’. I neuroni simpatici (NS) sono collocati nei gangli stellato e cervicale superiore e mediano il principale meccanismo fisiologico per aumentare la frequenza e la forza di contrazione cardiaca attraverso il rilascio di noradrenalina. Recentemente abbiamo riportato che i NS regolano il trofismo cardiaco attraverso la stimolazione dei recettori β2 adrenergici e la repressione delle ubiquitina ligasi muscolo specifiche (ovvero MuRF1 e Atrogin1), ma non si conoscono gli effetti dei NS sui sarcomeri. Il fattore di crescita neuronale (NGF) è rilasciato dal miocardio e controlla l’innervazione cardiaca da parte dei NS dopo il legame al suo recettore (TrkA) ed è necessario per la sopravvivenza neuronale. Di conseguenza l'accoppiamento tra neuroni simpatici e il cuore riguarda una comunicazione bidirezionale: il cuore ha bisogno di essere accoppiato ai NS per ricevere lo stimolo noradrenergico per un aumento efficiente della contrazione del cuore, e, viceversa, i NS sono accoppiati al cuore per ricevere lo stimolo neurotrofico che è necessario per la sopravvivenza dei neuroni. Tuttavia, non si conosce se è presente un’interazione cellula-cellula nell’accoppiamento tra cuore e neuroni. La giunzione neuromuscolare (GNM) costituisce un’interazione tra il muscolo e il neurone, ben descritta sia in termini di funzione che di struttura. E’ caratterizzata da ispessimenti della membrana, accumulo dei recettori acetilcolinergici, ridotto spazio intermembrana (70-50 nm) e rilascio di neurotrofine da parte dei miociti (ad esempio NT3, NT4). Considerando l'interazione tra i NS ed il cuore (giunzione neuro cardiaca, GNC), questo studio ha lo scopo di i) valutare gli effetti della stimolazione anterograda dei NS sulle strutture sarcomeriche, ii) determinare se strutture cellulari specifiche sono presenti a livello del sito di contatto tra NS e cardiomiocita, iii) studiare il ruolo del contatto tra cardiomiociti e neuroni nella segnalazione mediata da NGF. Risultati: Per analizzare i cambiamenti nella struttura del sarcomero, colture di cardiomiociti sono state trattate con stimoli adrenergici (clenbuterolo , fenilefrina e norepinefrina) oppure con HBSS. Poiché la rimozione di nutrienti e la denervazione simpatica agiscono su meccanismi comuni, possiamo fare un parallelismo tra i due stimoli proatrofici sull’alterazione nei sarcomeri. L’incubazione con agonisti adrenergici non ha causato cambiamenti significativi, mentre l’HBSS ha provocato una diminuzione del 41.86% dell’area sarcomerica, suggerendo che la degradazione dei sarcomeri è più veloce rispetto alla loro sintesi. Questo risultato è stato confermato da esperimenti di imaging in tempo reale su CM trasfettati con un costrutto codificante per la RFP-zasp, proteina localizzata nella linea z. Per capire se le proteine sarcomeriche condividono lo stesso destino durante il trattamento con HBSS, sono state effettuate analisi di immunofluorescenza (IF) e western blot (WB). Mentre α actinina e troponina cardiaca (cTn) I hanno mostrato delocalizzazione e degradazione, non sono stati misurati cambiamenti significativi per cTnT in seguito al trattamento con HBSS, suggerendo che le proteine sarcomeriche sono degradate in modi diversi. Per capire quale meccanismo di degradazione delle proteine è coinvolto nello smantellamento dei sarcomeri, abbiamo considerato il sistema autofagico-lisosomale e ubiquitina-proteasoma. Analisi di WB e IF hanno mostrato l'attivazione di entrambi i sistemi in cellule trattate con HBSS. In esperimenti di imaging in tempo reale su cardiomiociti co-trasfettati con costrutti codificanti per RFP-zasp e EGFP-LC3 è stato osservato l’arricchimento di LC3 vicino ai sarcomeri in seguito a deprivazione di nutrienti e siero, suggerendo che l’autofagia potrebbe essere coinvolta nella degradazione dei sarcomeri. Inoltre analisi di IF hanno mostrato una marcatura per l’ubiquitina in corrispondenza della linea M dei sarcomeri in cellule incubate con HBSS, suggerendo che le ubiquitina ligasi potrebbero essere coinvolte nello smantellamento dei sarcomeri. Poiché MuRF1 è un’ubiquitina ligasi muscolo specifica localizzata nella linea M dei sarcomeri e sovraespressa in condizioni di digiuno, abbiamo valutato il suo ruolo nella degradazione delle proteine sarcomeriche. La sua sovraespressione ha provocato un calo dell’area sarcomerica dell’88.57% rispetto ai controlli, mentre il suo silenziamento in cardiomiociti incubati con HBSS non ha impedito la degradazione dei sarcomeri (446.19 ±35.65 vs 144.91 ±26.25μm2 di area sarcomerica nei controlli e nei cardiomiociti silenziati e incubati con HBSS rispettivamente). Questi risultati sono stati confermati da esperimenti di imaging in tempo reale su cardiomiociti trasfettati con RFP-zasp, e suggeriscono che il sistema ubiquitina-proteasoma ed in particolare Murf1 siano coinvolti nella degradazione dei sarcomeri, anche se quello mediato da Murf1 non è l’unico meccanismo. Considerando l'analisi dell’interazione neuro-cardiaca, le analisi di IF su criosezioni di cuore di ratto hanno mostrato densa innervazione del cuore da parte dei neuroni simpatici che sembrano interagire soprattutto con cardiomiociti rispetto ad altri tipi cellulari che sono ben rappresentati nel cuore (ad esempio fibroblasti cardiaci, FC). L’analisi di microscopia elettronica su criosezioni cardiache di topo e ratto e co-culture di NS e cardiomiociti ha mostrato una stretta associazione tra NS e cardiomiociti (con una distanza intermembrana di circa 70nm), accumulo di vescicole di neurotrasmettitore e l'aumento della densità delle proteine di membrana. Questi dati supportano l’esistenza dell'interazione diretta tra i neuroni simpatici e i cardiomiociti. Per analizzare tale interazione, sono state sviluppate co-culture di NS e cardiomiociti, isolando i neuroni simpatici gangliari (NSG) dai gangli cervicali superiori e i cardiomiociti dal cuore dei ratti neonati. Entrambi i tipi cellulari sono stati caratterizzati analizzando in IF la dopamina β-idrossilasi, un marcatore per i neuroni noradrenergici, e l’α actinina, una proteina sarcomerica. Inoltre l’arricchimento di molecole di adesione cellula-cellula, tra cui β catenina e caderina, è stato osservato nei siti di contatto tra processi simpatici e cardiomiociti. Tale arricchimento è stato misurato dopo 2 settimane di co-coltura, suggerendo che co-culture di neuroni e cardiomiociti sono sottoposte a maturazione in funzione del tempo. In co-colture a spot, che consentono di identificare processi in contatto con cardiomiociti o altre cellule cardiache (principalmente fibroblasti), una superficie superiore era occupata dai processi simpatici su cardiomiociti rispetto alle altre cellule cardiache dopo la rimozioni dell’NGF (67.11 ±12.36% vs 3.79 ±1.12% della superficie occupata da processi rispettivamente), sostenendo la presenza di un’interazione preferenziale tra neuroni e cardiomiociti. Questo concetto è ulteriormente supportato dall'osservazione che i neuroni simpatici sviluppano contatti più grandi sui cardiomiociti che su altre cellule cardiache (82.88 ±1.3% di diminuzione della superficie di contatto su altre cellule cardiache rispetto ai cardiomiociti). Nell’insieme, questi dati suggeriscono che i NS stabiliscono un’interazione diretta e stabile con i cardiomiociti e non altre cellule cardiache. Poiché si conosce che il miocardio produce NGF che è necessario per la vitalità dei NS, il ruolo funzionale della GNC è stato valutato considerando il signaling mediato dall’NGF. Questa neurotrofina è sintetizzata dai cardiomiociti, come rilevato dalle analisi di western blot. La trasfezione di siRNA contro l’NGF nei cardiomiociti ha causato una diminuzione del 72.91% nell'espressione della neurotrofina e ridotto la densità neuronale in co-culture di neuroni e cardiomiociti (65.72 ±9.33% di diminuzione della densità neuronale rispetto alla trasfezione con il siRNA di controllo). Questo effetto è stato abolito dall'aggiunta di NGF nel mezzo di coltura e supporta che i neuroni dipendono dall’NGF prodotto dai cardiomiociti. Il legame dell’NGF al suo recettore TrkA consente la sua attivazione, endocitosi e trasporto retrogrado al soma neuronale. Sono stati valutati i movimenti retrogradi del TrkA, monitorando la velocità di trasporto utilizzando tecniche di imaging in tempo reale in co-culture con NS trasfettati con il costrutto TrkA-DsRed2. La velocità dei movimenti retrogradi del TrkA-DsRed2 nei neuroni dipende dalla presenza di NGF (0.32 ±0.06 vs 0.19 ± 0.03μm/s in presenza o assenza di NGF). In co-culture, i movimenti retrogradi erano più alti e più veloce nei processi in contatto con cardiomiociti rispetto ad altre cellule cardiache (0.24 ±0.05 vs 0.11 ±0.02μm/s rispettivamente), sostenendo l'idea che il TrkA è attivato sui cardiomiociti e non sulle altre cellule cardiache e che i neuroni dipendono da NGF derivato da cardiomiociti. Poiché i NS interagiscono con i cardiomiociti e sono dipendenti dall’NGF che questi rilasciano, abbiamo testato l'ipotesi secondo cui la GNC sia necessaria per la sopravvivenza neuronale. Analisi di IF su criosezioni di cuore murino hanno mostrato accumulo di TrkA nel sito di contatto tra il cardiomiocita e il NS, suggerendo che il signaling mediato dall’NGF potrebbe essere coinvolto nella GNC. Inoltre, terreno condizionato da cardiomiociti non ha impedito la morte neuronale (58.21 ±10.42% di diminuzione della densità neuronale rispetto alla co-cultura), suggerendo che l’NGF nel mezzo non sia sufficiente per la sopravvivenza neuronale. Coerentemente abbiamo misurato la concentrazione di NGF nel terreno condizionato da cardiomiociti ed è risultata 1000 volte inferiore rispetto alla dose minima necessaria per la sopravvivenza neuronale (0.13 ±0.08pM). Per valutare se il signaling mediato dall’NGF avviene da una singola cellula all’altra, co-culture sono state co-trasfettate con siRNA contro l’NGF e un plasmide codificante per la GFP che permette l'identificazione dei cardiomiociti silenziati per la neurotrofina. I processi simpatici su cardiomiociti silenziati hanno mostrato una riduzione del 19.56 ±4,01% della zona di contatto neuro-cardiaca rispetto ai cardiomiociti non trasfettati della stessa co-coltura, a sostegno del fatto che il singaling dell’NGF sia localizzato nel sito di contatto tra una cellula e l’altra. Inoltre, le co-colture sono state trasfettate con un costrutto codificante per l’NGF per rilevare l’accumulo della neurotrofina nei processi utilizzando tecniche di IF. Solo i processi in contatto con i cardiomiociti trasfettati contenevano accumuli di NGF, mentre quelli a contatto con cardiomiociti non trasfettati non possedevano NGF (43.43 ±4.17 vs 10.77 ±4.1% dei processi in contatto con cardiomiociti trasfettati e non rispettivamente). Nel loro insieme, questi dati suggeriscono che la presenza dell’interazione neuro-cardiaca sia necessaria per consentire la segnalazione dell’ NGF. Alla fine di questo lavoro abbiamo interferito con il signaling dell’NGF utilizzando diverse strategie. In primo luogo abbiamo utilizzato un anticorpo anti-NGF per sequestrare la neurotrofina dal terreno. In secondo luogo, poiché nelle analisi di microscopia elettronica abbiamo rilevato siti di distanza cellula-cellula di 10nm, abbiamo usato un antagonista del TrkA più piccolo dell’anticorpo, il c(92-96). In terzo luogo abbiamo utilizzato il k252a che ha una dimensione paragonabile a quella del c(92-96) e che è permeabile alle membrane. Considerando che ogni approccio ha funzionato sui NS, causando una significativa riduzione della densità neuronale, solo il k252a è stato in grado di ridurre la densità neuronale in co-colture (73.24 ±4.18% di diminuzione della densità neuronale media rispetto al controllo), suggerendo che la GNC è un microambiente isolato protetto dalla diffusione. Poiché il k252a ha causato la riduzione neuronale in co-colture, abbiamo usato questo inibitore per stimare la concentrazione di NGF nel sito di contatto, incubando i neuroni da soli con k252a e NGF in concentrazioni crescenti. La concentrazione stimata è stata di 1.4 ±0.03nM, 3.5 volte superiore alla dose minima necessaria per la sopravvivenza neuronale, supportando che la GNC è caratterizzata da un'alta concentrazione di NGF. Conclusioni: Nell’insieme, i nostri risultati suggeriscono che i neuroni simpatici stabiliscono un’interazione diretta con i cardiomiociti e che dipendono dall’NGF derivato dai cardiomiociti. Inoltre, il signaling mediato dall’NGF necessita di questa interazione diretta che facilita l’attivazione del TrkA grazie allo sviluppo di un microdominio isolato e caratterizzato da una elevata concentrazione di NGF e dall’arricchimento del TrkA. Infine, lo smantellamento dei sarcomeri comporta l'attivazione dei sistemi di degradazione delle proteine e, in particolare, dell’ubiquitina ligasi MuRF1, la cui modulazione da parte dei NS può modificare la struttura del sarcomero
30-gen-2014
Inglese
NGF, sympathetic neurons, heart, sarcomere, NGF, neuroni simpatici, cuore, sarcomero
Università degli studi di Padova
150
File in questo prodotto:
File Dimensione Formato  
Mauro_Franzoso_tesi.pdf

accesso aperto

Dimensione 33.98 MB
Formato Adobe PDF
33.98 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/111189
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-111189