Il morbo di Alzheimer è la malattia neurodegenerativa più diffusa e una delle principali cause di demenza nei paesi occidentali. Questa patologia determina progressivi danni alla memoria e ad altre importanti funzioni cognitive. La maggior parte dei casi di Alzheimer è sporadica, compare in tarda età e i fattori di rischio più conosciuti sono l’invecchiamento e la variante allelica APO-e4 del gene che codifica per la lipoproteina E. Esiste tuttavia una piccola ma significativa percentuale di casi ereditari (forma familiare di Alzheimer, FAD) che è causata da mutazioni autosomiche dominanti in tre geni che codificano per la Proteina Precursore dell’Amiloide (APP), per la Presenilina-1 (PS1) e la Presenilina-2 (PS2). L’APP è una proteina transmembrana espressa principalmente nel cervello. Le preseniline sono proteine omologhe di membrana presenti soprattutto nel reticolo endoplasmatico e nell’apparato di Golgi. Costituiscono ciascuna, indipendentemente, la parte catalitica dell’enzima gamma-secretasi che, insieme all’enzima beta-secretasi, è responsabile del taglio dell’APP e della conseguente formazione di peptidi Abeta, molto dannosi per il cervello. L’identificazione di mutazioni genetiche coinvolte nelle forme familiari di Alzheimer, ha permesso lo sviluppo di modelli di topi transgenici. Dato che i casi sporadici e quelli familiari della malattia sono clinicamente molto simili, questi modelli rappresentano uno strumento essenziale per la ricerca, poiché permettono lo studio di possibili meccanismi molecolari condivisi e danno la possibilità di scoprire/migliorare eventuali terapie. In questo progetto, gli esperimenti sono stati effettuati utilizzando due modelli transgenici di topi disponibili in laboratorio. Il primo è un topo transgenico omozigote per la mutazione PS2-N141 che è stata posta sotto il controllo del promotore prionico e quindi viene espressa in tutti i tessuti. Il secondo modello è omozigote per la stessa mutazione di PS2 e anche per una mutazione dell’APP (APPSwe) che si trova sotto il controllo del promotore Thy.1, ed è quindi espressa solo nel cervello. L’obiettivo di questo studio è quello di trovare possibili danni precoci nei mitocondri di cervello in questi modelli transgenici di Alzheimer. I mitocondri sono organelli citoplasmatici principalmente coinvolti nel fornire energia alla cellula sotto forma di ATP, ma sono in realtà indispensabili per molte altre funzioni, come ad esempio il controllo dell’omeostasi del calcio, la produzione delle specie radicali di ossigeno (ROS) e l’apoptosi. Al giorno d’oggi, è ampiamente accettato che danni a questi organelli non sono solo presenti durante il normale invecchiamento ma anche in molte altre malattie legate ad esso, comprese le malattie neurodegenerative come l’Alzheimer, il morbo di Parkinson, la sclerosi laterale amiotrofica e la corea di Huntington. I primi esperimenti sono stati effettuati in mitocondri isolati dal cervello dei topi WT, PS2 e PS2APP, partendo da quelli di 8 giorni fino a topi di 2 anni, per documentare la possibile presenza e/o progressione di disfunzionalità dei mitocondri. Abbiamo valutato diversi parametri bioenergetici, come la velocità di consumo dell’ossigeno (oxygen consumption rate, OCR), il potenziale di membrana mitocondriale e la capacità dei mitocondri di accumulare calcio nella matrice (calcium retention capacity, CRC). I risultati di questi esperimenti non hanno tuttavia rivelato particolari differenze tra i topi WT e quelli transgenici, né per quanto riguarda l’attività dei complessi della catena respiratoria, né per la sensibilità del poro di transizione della permeabilità mitocondriale (permeability transition pore, PTP) ad un elevato aumento di Ca2+ nella matrice. Tali dati suggeriscono che probabilmente, queste mutazioni FAD non inducono direttamente danni ai mitocondri. I mitocondri isolati sono uno strumento molto utile per studiare le caratteristiche e la funzionalità di questi organelli, ma presentano tuttavia alcuni svantaggi: per esempio, in queste condizioni il mitocondrio è separato dal suo ambiente fisiologico e non è così possibile studiare le sue interazioni con le altre componenti del citoplasma. Per questo motivo, abbiamo deciso di spostare la nostra attenzione sulle colture primarie neuronali di ippocampo, perché quest’area del cervello è una delle regioni maggiormente e precocemente colpite dall’Alzheimer. Per prima cosa, abbiamo comparato la respirazione basale e la respirazione accoppiata alla sintesi di ATP misurate con l’Extracellular Flux Analyzer (Seahorse) senza però trovare differenze significative tra le colture dei tre genotipi. La misura della respirazione massima è invece più alta nei WT rispetto a PS2 e PS2APP, e la differenza è significativa tra WT e PS2APP, suggerendo una possibile alterazione nel rifornimento di substrati ossidabili ai mitocondri. In seguito, le misure effettuate per valutare la capacità dei mitocondri di mantenere il potenziale di membrana dopo l’inibizione selettiva dei complessi della catena respiratoria o dell’ATP sintasi, hanno rivelato un possibile difetto in quest’ultima, che potrebbe limitare la capacità di idrolizzare l’ATP, oppure alla presenza di difetti metabolici sconosciuti che limitano il rifornimento di ATP del citoplasma per sostenere l’attività idrolitica. Visti questi risultati, abbiamo provato a ripetere gli esperimenti in fibroblasti provenienti da pazienti caratterizzati dalla stessa mutazione di PS2 presente nei modelli transgenici di topo. In questo caso però, la differenza tra fibroblasti provenienti da controlli sani e quelli provenienti dai pazienti non è così marcata come quelli emersi dagli studi nelle colture neuronali primarie. Questo può essere spiegato dal fatto che i fibroblasti sono cellule molto diverse dai neuroni, potrebbero ad esempio utilizzare di più la glicolisi, o semplicemente potrebbero risentire meno dell’effetto della mutazione in PS2. Per verificare se effettivamente potesse esserci un difetto a livello dell’attività idrolitica dell’ATP sintasi, abbiamo provato a misurare indirettamente la velocità di idrolisi dell’ATP in mitocondri isolati da cervello di topi dei tre genotipi tramite l’ossidazione del NADH. Al momento, sembra che la velocità di idrolisi sia più veloce nei transgenici, anche se il numero di esperimenti non è ancora sufficiente per stabilire se tale differenza sia significativa o meno. Abbiamo inoltre verificato che bloccando la catena respiratoria o l’ATP sintasi, di fatto diminuendo la quota di ATP prodotto dai mitocondri, i neuroni WT, PS2 e PS2APP sono ugualmente in grado di regolare il calcio citosolico. Questo suggerisce che in queste condizioni sperimentali i neuroni sono in grado di sopperire alla riduzione dell'ATP e che probabilmente per evidenziare delle differenze tra i genotipi bisognerebbe utilizzare uno stimolo più forte o prolungato. Un altro parametro verificato è la produzione di ROS, che in condizioni basali è molto basso e che sembra essere simile tra i genotipi. Dati i risultati ottenuti fino ad adesso, sarebbe interessante studiare nel dettaglio l’attività dell’ATP sintasi che potrebbe essere alterata nei modelli transgenici e soprattutto potrebbe essere interessante studiare le interazioni metaboliche tra i mitocondri e il resto della cellula.

Study of mitochondria physiology in transgenic mouse models of Alzheimer's disease

RIGOTTO, GIULIA
2018

Abstract

Il morbo di Alzheimer è la malattia neurodegenerativa più diffusa e una delle principali cause di demenza nei paesi occidentali. Questa patologia determina progressivi danni alla memoria e ad altre importanti funzioni cognitive. La maggior parte dei casi di Alzheimer è sporadica, compare in tarda età e i fattori di rischio più conosciuti sono l’invecchiamento e la variante allelica APO-e4 del gene che codifica per la lipoproteina E. Esiste tuttavia una piccola ma significativa percentuale di casi ereditari (forma familiare di Alzheimer, FAD) che è causata da mutazioni autosomiche dominanti in tre geni che codificano per la Proteina Precursore dell’Amiloide (APP), per la Presenilina-1 (PS1) e la Presenilina-2 (PS2). L’APP è una proteina transmembrana espressa principalmente nel cervello. Le preseniline sono proteine omologhe di membrana presenti soprattutto nel reticolo endoplasmatico e nell’apparato di Golgi. Costituiscono ciascuna, indipendentemente, la parte catalitica dell’enzima gamma-secretasi che, insieme all’enzima beta-secretasi, è responsabile del taglio dell’APP e della conseguente formazione di peptidi Abeta, molto dannosi per il cervello. L’identificazione di mutazioni genetiche coinvolte nelle forme familiari di Alzheimer, ha permesso lo sviluppo di modelli di topi transgenici. Dato che i casi sporadici e quelli familiari della malattia sono clinicamente molto simili, questi modelli rappresentano uno strumento essenziale per la ricerca, poiché permettono lo studio di possibili meccanismi molecolari condivisi e danno la possibilità di scoprire/migliorare eventuali terapie. In questo progetto, gli esperimenti sono stati effettuati utilizzando due modelli transgenici di topi disponibili in laboratorio. Il primo è un topo transgenico omozigote per la mutazione PS2-N141 che è stata posta sotto il controllo del promotore prionico e quindi viene espressa in tutti i tessuti. Il secondo modello è omozigote per la stessa mutazione di PS2 e anche per una mutazione dell’APP (APPSwe) che si trova sotto il controllo del promotore Thy.1, ed è quindi espressa solo nel cervello. L’obiettivo di questo studio è quello di trovare possibili danni precoci nei mitocondri di cervello in questi modelli transgenici di Alzheimer. I mitocondri sono organelli citoplasmatici principalmente coinvolti nel fornire energia alla cellula sotto forma di ATP, ma sono in realtà indispensabili per molte altre funzioni, come ad esempio il controllo dell’omeostasi del calcio, la produzione delle specie radicali di ossigeno (ROS) e l’apoptosi. Al giorno d’oggi, è ampiamente accettato che danni a questi organelli non sono solo presenti durante il normale invecchiamento ma anche in molte altre malattie legate ad esso, comprese le malattie neurodegenerative come l’Alzheimer, il morbo di Parkinson, la sclerosi laterale amiotrofica e la corea di Huntington. I primi esperimenti sono stati effettuati in mitocondri isolati dal cervello dei topi WT, PS2 e PS2APP, partendo da quelli di 8 giorni fino a topi di 2 anni, per documentare la possibile presenza e/o progressione di disfunzionalità dei mitocondri. Abbiamo valutato diversi parametri bioenergetici, come la velocità di consumo dell’ossigeno (oxygen consumption rate, OCR), il potenziale di membrana mitocondriale e la capacità dei mitocondri di accumulare calcio nella matrice (calcium retention capacity, CRC). I risultati di questi esperimenti non hanno tuttavia rivelato particolari differenze tra i topi WT e quelli transgenici, né per quanto riguarda l’attività dei complessi della catena respiratoria, né per la sensibilità del poro di transizione della permeabilità mitocondriale (permeability transition pore, PTP) ad un elevato aumento di Ca2+ nella matrice. Tali dati suggeriscono che probabilmente, queste mutazioni FAD non inducono direttamente danni ai mitocondri. I mitocondri isolati sono uno strumento molto utile per studiare le caratteristiche e la funzionalità di questi organelli, ma presentano tuttavia alcuni svantaggi: per esempio, in queste condizioni il mitocondrio è separato dal suo ambiente fisiologico e non è così possibile studiare le sue interazioni con le altre componenti del citoplasma. Per questo motivo, abbiamo deciso di spostare la nostra attenzione sulle colture primarie neuronali di ippocampo, perché quest’area del cervello è una delle regioni maggiormente e precocemente colpite dall’Alzheimer. Per prima cosa, abbiamo comparato la respirazione basale e la respirazione accoppiata alla sintesi di ATP misurate con l’Extracellular Flux Analyzer (Seahorse) senza però trovare differenze significative tra le colture dei tre genotipi. La misura della respirazione massima è invece più alta nei WT rispetto a PS2 e PS2APP, e la differenza è significativa tra WT e PS2APP, suggerendo una possibile alterazione nel rifornimento di substrati ossidabili ai mitocondri. In seguito, le misure effettuate per valutare la capacità dei mitocondri di mantenere il potenziale di membrana dopo l’inibizione selettiva dei complessi della catena respiratoria o dell’ATP sintasi, hanno rivelato un possibile difetto in quest’ultima, che potrebbe limitare la capacità di idrolizzare l’ATP, oppure alla presenza di difetti metabolici sconosciuti che limitano il rifornimento di ATP del citoplasma per sostenere l’attività idrolitica. Visti questi risultati, abbiamo provato a ripetere gli esperimenti in fibroblasti provenienti da pazienti caratterizzati dalla stessa mutazione di PS2 presente nei modelli transgenici di topo. In questo caso però, la differenza tra fibroblasti provenienti da controlli sani e quelli provenienti dai pazienti non è così marcata come quelli emersi dagli studi nelle colture neuronali primarie. Questo può essere spiegato dal fatto che i fibroblasti sono cellule molto diverse dai neuroni, potrebbero ad esempio utilizzare di più la glicolisi, o semplicemente potrebbero risentire meno dell’effetto della mutazione in PS2. Per verificare se effettivamente potesse esserci un difetto a livello dell’attività idrolitica dell’ATP sintasi, abbiamo provato a misurare indirettamente la velocità di idrolisi dell’ATP in mitocondri isolati da cervello di topi dei tre genotipi tramite l’ossidazione del NADH. Al momento, sembra che la velocità di idrolisi sia più veloce nei transgenici, anche se il numero di esperimenti non è ancora sufficiente per stabilire se tale differenza sia significativa o meno. Abbiamo inoltre verificato che bloccando la catena respiratoria o l’ATP sintasi, di fatto diminuendo la quota di ATP prodotto dai mitocondri, i neuroni WT, PS2 e PS2APP sono ugualmente in grado di regolare il calcio citosolico. Questo suggerisce che in queste condizioni sperimentali i neuroni sono in grado di sopperire alla riduzione dell'ATP e che probabilmente per evidenziare delle differenze tra i genotipi bisognerebbe utilizzare uno stimolo più forte o prolungato. Un altro parametro verificato è la produzione di ROS, che in condizioni basali è molto basso e che sembra essere simile tra i genotipi. Dati i risultati ottenuti fino ad adesso, sarebbe interessante studiare nel dettaglio l’attività dell’ATP sintasi che potrebbe essere alterata nei modelli transgenici e soprattutto potrebbe essere interessante studiare le interazioni metaboliche tra i mitocondri e il resto della cellula.
14-gen-2018
Inglese
fisiologia mitocondriale/mitochondria physiology, malattia di Alzheimer/Alzheimer's disease, potenziale di membrana mitocondriale/mitochondrial membrane potential, neuroni/neurons, ippocampo/hippocampus, velocità di cosumo dell'ossigeno/oxygen consumption rate
Università degli studi di Padova
96
File in questo prodotto:
File Dimensione Formato  
Rigotto_Giulia_tesi.pdf

accesso aperto

Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/111211
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-111211