La miglior descrizione dell'Universo, di cui si dispone al momento, è il modello del ``Big Bang Caldo'', che contempla un universo in espansione nel quale viene seguita l'evoluzione temporale della densità e della temperatura della materia e della radiazione. I parametri che caratterizzano l'Universo osservato sono riassunti in un modello chiamato $\Lambda$CDM di concordanza: CDM sta per Cold Dark Matter (la componente dominante della materia), e $\Lambda$ è la costante cosmologica (una sorta di energia oscura, con effetto anti-gravitazionale). Secondo questo modello, l'universo è spazialmente piatto (cioè il parametro di densità $\Omega$ è uguale a uno), e il $75\%$ del suo bilancio energetico è assegnato all'energia oscura, circa il $20\%$ alla materia oscura e circa il $5\%$ alla materia ordinaria (barioni); la velocità dell'espansione assume il valore $70.5$ Km/s/Mpc (parametro di Hubble). Questa tesi si sofferma sulla distribuzione della materia oscura in strutture virializzate, chiamate aloni di materia oscura. Secondo la teoria di formazione delle strutture, le strutture cosmiche hanno origine dall'amplificazione di fluttuazione quantistiche durante un periodo iniziale di espansione accelerata (inflazione cosmica); queste perturbazioni crescono per effetto dell'autogravità fino al collasso, creando delle strutture virializzate. Durante il regime lineare (quando le fluttuazioni sono piccole), questo processo è ben descritto dalla teoria di Jeans. Il regime non lineare è molto più difficile da descrivere; i primi tentativi assumono una simmetria sferica, per la quale il collasso è descritto solo dalla densità interna (es. Peebles, 1980); più recentemente (White \& Silk 1979; Bond \& Myers 1996) questa ipotesi è stata rilassata, ed è stato proposto un modello più complesso nel quale le protostrutture sono descritte da ellissoidi triassiali, regolati dalla loro densità interna e dalla loro forma. Utilizzando i risultati ottenuti dall'analisi dinamica del collasso sferico e sfruttando il formalismo statistico degli ``excursion set'', è possibile ottenere informazioni analitiche in merito alla distribuzione di massa degli aloni di materia oscura. In questo approccio, per ogni particella nell'universo, la traiettoria che descrive l'evoluzione della densità della sfera di materia costruita attorno a quella particella viene modellata come un cammino browniano come funzione della massa $M$ all'interno della sfera. Quando una traiettoria interseca una pre-definita soglia, si assume che venga a formarsi una struttura virializzata di massa $M$. Considerando tutte le particelle dell'universo, si ottengono forme analitiche per la funzione di massa globale, e per le funzioni di massa dei progenitori e dei figli. Da queste, è possibile calcolare altre quantità, come i tassi di creazione e distruzione (istantanei e integrati). Negli anni '90, il collasso ellissoidale è stato utilizzato per trovare un miglior accordo con le simulazioni numeriche. Tuttavia, in parte a causa della complessità analitica del modello, fino ad ora non è stato ancora possibile trovare in letteratura forme analitiche per esempio per la funzione dei figli o per i tassi di distruzione (vedi Tabella \ref{tab:scec}). l'obiettivo principale di questo lavoro è di fornire tali espressioni per una serie di funzioni legate alle distribuzione di massa degli aloni di materia oscura, aspirando ad ottenere delle formule semplici ed accurate. Per farlo, siamo partiti dalle considerazioni statistiche di Sheth, Mo e Tormen (2001) che introducono gli effetti dinamici del collasso ellissoidale nel formalismo excursion sets, modificando la forma della soglia di densità. Sheth e Tormen (2002), inoltre, propongono una nuova espressione per la funzione di massa globale ellissoidale, usando uno sviluppo in serie di Taylor per la barriera: questa espressione permette di derivare forme analitiche anche per le funzioni di massa condizionali. Abbiamo ottenuto un set di modelli cambiando l'ordine di questo sviluppo di Taylo, e considerando la normalizzazione delle distribuzioni come un parametro libero; abbiamo poi confrontato queste equazioni con i risultati della simulazione cosmologica Gif2 (Gao et al. 2004) e, in alcuni casi, con la Millennium Simulation (Springel et al. 2005). Per le funzioni di massa globale e condizionali, l'accordo tra modelli e simulazioni è stimato usando un metodo $\chi ^2$. Per i merger rates abbiamo confronti qualitativi, mentre per i tassi di creazione abbiamo derivato le sole equazioni analitiche. Ci siamo soffermati specialmente sui casi che forniscono le espressioni analiticamente più semplici: le serie di Taylor con zero ordini e con infiniti ordini. Nell'ultima parte della tesi, proponiamo un nuovo metodo statistico che può scartare gli inconvenienti dei metodi $\chi ^2$: (i) la divisione in intervalli dei dati e (ii) il trascurare le particelle di campo (polvere) delle simulazioni. Per quanto riguarda il punto (i), differenti ampiezze degli internalli di massa possono portare a piccole differenze nei risultati del $\chi^2$. Il punto (ii) si riferisce al fatto che le particelle che non sono legate in aloni sono di solito considerate solo per il calcolo della normalizzazione. Usando un'analisi di massima verosimiglianza, possiamo trattare dati non raggruppati in intervalli e considerare la polvere nella determinazione dei parametri migliori per la funzione di massa. I nostri tests sono condotti confrontando una funzione di massa a due parametri con i risultati di simulazioni Monte Carlo. Il nostro lavoro si inserisce naturalmente nella ricerca sistematica delle espressioni analitiche associate al collasso ellissoidale degli aloni di materia oscura. Poichè si pensa che gli aloni siano i siti ove i barioni possono concentrarsi e formare stelle, galassie ed altri oggetti luminosi, le espressioni che otteniamo possono essere usate in varie applicazioni, dallo svelare la natura della materia oscura attraverso l'auto annichilazione, fino alla comprensione dei meccanismi che portano alla formazione galattica. Inoltre, la descrizione dell'evoluzione galattica richiede la conoscenza dell'alone correlato: i modelli semi-analitici di formazione galattica dipendono dalla funzione di massa globale degli aloni di materia oscura, e i corrispondenti merger-trees sono basati sulle funzioni di massa dei progenitori. I tassi di creazione e distruzione sono utili per calcolare le abbondanze di oggetti come Nuclei Galattici Attivi (AGN) e Buchi Neri Super Massicci (SMBH). Altri esempi dell'utilizzo delle distribuzioni della materia oscura in studi di formazione galattica si possono trovare copiosi in letteratura.\\ L'elaborato si articola in questo modo: il {\bf Capitoli 1} giustifica la necessità della materia oscura. Nel {\bf Capitolo 2} presentiamo il modello cosmologico di concordanza, la sua geometria e la storia termica. Inoltre, introduciamo i modelli, lineare e non lineare, di formazione degli aloni di materia oscura. Il {\bf Capitolo 3} descrive l'approccio degli excursion sets nel contesto del collasso sferico. L'estensione di questo metodo al collasso ellissoidale è proposto nel {\bf Capitolo 4}, ove vengono esposti i primi risultati analitici. Nel {\bf Capitolo 5} confrontiamo le nostre predizioni analitiche con i risultati di due simulazioni numeriche. Il {\bf Capitolo 6} è dedicato all'esposizione dei test di un nuovo metodo di massima verosimiglianza con l'utilizzo di dati non raggruppati in intervalli e con le particelle di polvere. Infine tracciamo le nostre {\bf Conclusioni}, seguite da un'{\bf Appendice} ove sono descritte le simulazioni numeriche.
formation of dark matter haloes: models and simulations
BIONDI, FEDERICO
2010
Abstract
La miglior descrizione dell'Universo, di cui si dispone al momento, è il modello del ``Big Bang Caldo'', che contempla un universo in espansione nel quale viene seguita l'evoluzione temporale della densità e della temperatura della materia e della radiazione. I parametri che caratterizzano l'Universo osservato sono riassunti in un modello chiamato $\Lambda$CDM di concordanza: CDM sta per Cold Dark Matter (la componente dominante della materia), e $\Lambda$ è la costante cosmologica (una sorta di energia oscura, con effetto anti-gravitazionale). Secondo questo modello, l'universo è spazialmente piatto (cioè il parametro di densità $\Omega$ è uguale a uno), e il $75\%$ del suo bilancio energetico è assegnato all'energia oscura, circa il $20\%$ alla materia oscura e circa il $5\%$ alla materia ordinaria (barioni); la velocità dell'espansione assume il valore $70.5$ Km/s/Mpc (parametro di Hubble). Questa tesi si sofferma sulla distribuzione della materia oscura in strutture virializzate, chiamate aloni di materia oscura. Secondo la teoria di formazione delle strutture, le strutture cosmiche hanno origine dall'amplificazione di fluttuazione quantistiche durante un periodo iniziale di espansione accelerata (inflazione cosmica); queste perturbazioni crescono per effetto dell'autogravità fino al collasso, creando delle strutture virializzate. Durante il regime lineare (quando le fluttuazioni sono piccole), questo processo è ben descritto dalla teoria di Jeans. Il regime non lineare è molto più difficile da descrivere; i primi tentativi assumono una simmetria sferica, per la quale il collasso è descritto solo dalla densità interna (es. Peebles, 1980); più recentemente (White \& Silk 1979; Bond \& Myers 1996) questa ipotesi è stata rilassata, ed è stato proposto un modello più complesso nel quale le protostrutture sono descritte da ellissoidi triassiali, regolati dalla loro densità interna e dalla loro forma. Utilizzando i risultati ottenuti dall'analisi dinamica del collasso sferico e sfruttando il formalismo statistico degli ``excursion set'', è possibile ottenere informazioni analitiche in merito alla distribuzione di massa degli aloni di materia oscura. In questo approccio, per ogni particella nell'universo, la traiettoria che descrive l'evoluzione della densità della sfera di materia costruita attorno a quella particella viene modellata come un cammino browniano come funzione della massa $M$ all'interno della sfera. Quando una traiettoria interseca una pre-definita soglia, si assume che venga a formarsi una struttura virializzata di massa $M$. Considerando tutte le particelle dell'universo, si ottengono forme analitiche per la funzione di massa globale, e per le funzioni di massa dei progenitori e dei figli. Da queste, è possibile calcolare altre quantità, come i tassi di creazione e distruzione (istantanei e integrati). Negli anni '90, il collasso ellissoidale è stato utilizzato per trovare un miglior accordo con le simulazioni numeriche. Tuttavia, in parte a causa della complessità analitica del modello, fino ad ora non è stato ancora possibile trovare in letteratura forme analitiche per esempio per la funzione dei figli o per i tassi di distruzione (vedi Tabella \ref{tab:scec}). l'obiettivo principale di questo lavoro è di fornire tali espressioni per una serie di funzioni legate alle distribuzione di massa degli aloni di materia oscura, aspirando ad ottenere delle formule semplici ed accurate. Per farlo, siamo partiti dalle considerazioni statistiche di Sheth, Mo e Tormen (2001) che introducono gli effetti dinamici del collasso ellissoidale nel formalismo excursion sets, modificando la forma della soglia di densità. Sheth e Tormen (2002), inoltre, propongono una nuova espressione per la funzione di massa globale ellissoidale, usando uno sviluppo in serie di Taylor per la barriera: questa espressione permette di derivare forme analitiche anche per le funzioni di massa condizionali. Abbiamo ottenuto un set di modelli cambiando l'ordine di questo sviluppo di Taylo, e considerando la normalizzazione delle distribuzioni come un parametro libero; abbiamo poi confrontato queste equazioni con i risultati della simulazione cosmologica Gif2 (Gao et al. 2004) e, in alcuni casi, con la Millennium Simulation (Springel et al. 2005). Per le funzioni di massa globale e condizionali, l'accordo tra modelli e simulazioni è stimato usando un metodo $\chi ^2$. Per i merger rates abbiamo confronti qualitativi, mentre per i tassi di creazione abbiamo derivato le sole equazioni analitiche. Ci siamo soffermati specialmente sui casi che forniscono le espressioni analiticamente più semplici: le serie di Taylor con zero ordini e con infiniti ordini. Nell'ultima parte della tesi, proponiamo un nuovo metodo statistico che può scartare gli inconvenienti dei metodi $\chi ^2$: (i) la divisione in intervalli dei dati e (ii) il trascurare le particelle di campo (polvere) delle simulazioni. Per quanto riguarda il punto (i), differenti ampiezze degli internalli di massa possono portare a piccole differenze nei risultati del $\chi^2$. Il punto (ii) si riferisce al fatto che le particelle che non sono legate in aloni sono di solito considerate solo per il calcolo della normalizzazione. Usando un'analisi di massima verosimiglianza, possiamo trattare dati non raggruppati in intervalli e considerare la polvere nella determinazione dei parametri migliori per la funzione di massa. I nostri tests sono condotti confrontando una funzione di massa a due parametri con i risultati di simulazioni Monte Carlo. Il nostro lavoro si inserisce naturalmente nella ricerca sistematica delle espressioni analitiche associate al collasso ellissoidale degli aloni di materia oscura. Poichè si pensa che gli aloni siano i siti ove i barioni possono concentrarsi e formare stelle, galassie ed altri oggetti luminosi, le espressioni che otteniamo possono essere usate in varie applicazioni, dallo svelare la natura della materia oscura attraverso l'auto annichilazione, fino alla comprensione dei meccanismi che portano alla formazione galattica. Inoltre, la descrizione dell'evoluzione galattica richiede la conoscenza dell'alone correlato: i modelli semi-analitici di formazione galattica dipendono dalla funzione di massa globale degli aloni di materia oscura, e i corrispondenti merger-trees sono basati sulle funzioni di massa dei progenitori. I tassi di creazione e distruzione sono utili per calcolare le abbondanze di oggetti come Nuclei Galattici Attivi (AGN) e Buchi Neri Super Massicci (SMBH). Altri esempi dell'utilizzo delle distribuzioni della materia oscura in studi di formazione galattica si possono trovare copiosi in letteratura.\\ L'elaborato si articola in questo modo: il {\bf Capitoli 1} giustifica la necessità della materia oscura. Nel {\bf Capitolo 2} presentiamo il modello cosmologico di concordanza, la sua geometria e la storia termica. Inoltre, introduciamo i modelli, lineare e non lineare, di formazione degli aloni di materia oscura. Il {\bf Capitolo 3} descrive l'approccio degli excursion sets nel contesto del collasso sferico. L'estensione di questo metodo al collasso ellissoidale è proposto nel {\bf Capitolo 4}, ove vengono esposti i primi risultati analitici. Nel {\bf Capitolo 5} confrontiamo le nostre predizioni analitiche con i risultati di due simulazioni numeriche. Il {\bf Capitolo 6} è dedicato all'esposizione dei test di un nuovo metodo di massima verosimiglianza con l'utilizzo di dati non raggruppati in intervalli e con le particelle di polvere. Infine tracciamo le nostre {\bf Conclusioni}, seguite da un'{\bf Appendice} ove sono descritte le simulazioni numeriche.File | Dimensione | Formato | |
---|---|---|---|
chloe.pdf
accesso aperto
Dimensione
3.1 MB
Formato
Adobe PDF
|
3.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/111221
URN:NBN:IT:UNIPD-111221