Magnetic resonance imaging (MRI) is increasingly being used in medical settings because of its ability to produce, non-invasively, high quality images of the inside of the human body. Since its introduction in early 70’s, more and more complex acquisition techniques have been proposed, raising MRI to be exploited in a wide spectrum of applications. Innovative MRI modalities, such as diffusion and functional imaging, require complex analysis techniques and advanced algorithms in order to extract useful information from the acquired data. The aim of the present work has been to develop and optimize state-of-the-art techniques to be applied in the analysis of MRI data both in experimental and clinical settings. During my doctoral program I have been actively involved in several research projects, each time facing many different issues. In this dissertation, however, I will report the results obtained in three most appealing projects I partecipated to. These projects were devoted (i) to the implementation of an innovative experimental protocol for functional MRI in laboratory animals, (ii) to the development of new methods for the analysis of Dynamic Contrast Enhanced MRI data in experimental tumour models and (iii) to the analysis of diffusion MRI data in stroke patients. Particular emphasis will be given to the technical aspects regarding the algorithms and processing methods used in the analysis of data.
Advanced image-processing techniques in magnetic resonance imaging for the investigation of brain pathologies and tumour angiogenesis
DADUCCI, Alessandro
2010
Abstract
Magnetic resonance imaging (MRI) is increasingly being used in medical settings because of its ability to produce, non-invasively, high quality images of the inside of the human body. Since its introduction in early 70’s, more and more complex acquisition techniques have been proposed, raising MRI to be exploited in a wide spectrum of applications. Innovative MRI modalities, such as diffusion and functional imaging, require complex analysis techniques and advanced algorithms in order to extract useful information from the acquired data. The aim of the present work has been to develop and optimize state-of-the-art techniques to be applied in the analysis of MRI data both in experimental and clinical settings. During my doctoral program I have been actively involved in several research projects, each time facing many different issues. In this dissertation, however, I will report the results obtained in three most appealing projects I partecipated to. These projects were devoted (i) to the implementation of an innovative experimental protocol for functional MRI in laboratory animals, (ii) to the development of new methods for the analysis of Dynamic Contrast Enhanced MRI data in experimental tumour models and (iii) to the analysis of diffusion MRI data in stroke patients. Particular emphasis will be given to the technical aspects regarding the algorithms and processing methods used in the analysis of data.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Dimensione
14.45 MB
Formato
Adobe PDF
|
14.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/114424
URN:NBN:IT:UNIVR-114424