This thesis addresses the long-term goal of full (supervised) autonomy in surgery, characterized by dynamic environmental (anatomical) conditions, unpredictable workflow of execution and workspace constraints. The scope is to reach autonomy at the level of sub-tasks of a surgical procedure, i.e. repetitive, yet tedious operations (e.g., dexterous manipulation of small objects in a constrained environment, as needle and wire for suturing). This will help reducing time of execution, hospital costs and fatigue of surgeons during the whole procedure, while further improving the recovery time for the patients. A novel framework for autonomous surgical task execution is presented in the first part of this thesis, based on answer set programming (ASP), a logic programming paradigm, for task planning (i.e., coordination of elementary actions and motions). Logic programming allows to directly encode surgical task knowledge, representing emph{plan reasoning methodology} rather than a set of pre-defined plans. This solution introduces several key advantages, as reliable human-like interpretable plan generation, real-time monitoring of the environment and the workflow for ready adaptation and failure recovery. Moreover, an extended review of logic programming for robotics is presented, motivating the choice of ASP for surgery and providing an useful guide for robotic designers. In the second part of the thesis, a novel framework based on inductive logic programming (ILP) is presented for surgical task knowledge learning and refinement. ILP guarantees fast learning from very few examples, a common drawback of surgery. Also, a novel action identification algorithm is proposed based on automatic environmental feature extraction from videos, dealing for the first time with small and noisy datasets collecting different workflows of executions under environmental variations. This allows to define a systematic methodology for unsupervised ILP. All the results in this thesis are validated on a non-standard version of the benchmark training ring transfer task for surgeons, which mimics some of the challenges of real surgery, e.g. constrained bimanual motion in small space.

Interpretable task planning and learning for autonomous robotic surgery with logic programming

MELI, DANIELE
In corso di stampa

Abstract

This thesis addresses the long-term goal of full (supervised) autonomy in surgery, characterized by dynamic environmental (anatomical) conditions, unpredictable workflow of execution and workspace constraints. The scope is to reach autonomy at the level of sub-tasks of a surgical procedure, i.e. repetitive, yet tedious operations (e.g., dexterous manipulation of small objects in a constrained environment, as needle and wire for suturing). This will help reducing time of execution, hospital costs and fatigue of surgeons during the whole procedure, while further improving the recovery time for the patients. A novel framework for autonomous surgical task execution is presented in the first part of this thesis, based on answer set programming (ASP), a logic programming paradigm, for task planning (i.e., coordination of elementary actions and motions). Logic programming allows to directly encode surgical task knowledge, representing emph{plan reasoning methodology} rather than a set of pre-defined plans. This solution introduces several key advantages, as reliable human-like interpretable plan generation, real-time monitoring of the environment and the workflow for ready adaptation and failure recovery. Moreover, an extended review of logic programming for robotics is presented, motivating the choice of ASP for surgery and providing an useful guide for robotic designers. In the second part of the thesis, a novel framework based on inductive logic programming (ILP) is presented for surgical task knowledge learning and refinement. ILP guarantees fast learning from very few examples, a common drawback of surgery. Also, a novel action identification algorithm is proposed based on automatic environmental feature extraction from videos, dealing for the first time with small and noisy datasets collecting different workflows of executions under environmental variations. This allows to define a systematic methodology for unsupervised ILP. All the results in this thesis are validated on a non-standard version of the benchmark training ring transfer task for surgeons, which mimics some of the challenges of real surgery, e.g. constrained bimanual motion in small space.
In corso di stampa
Inglese
204
File in questo prodotto:
File Dimensione Formato  
thesis.pdf

accesso aperto

Dimensione 15.62 MB
Formato Adobe PDF
15.62 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/115281
Il codice NBN di questa tesi è URN:NBN:IT:UNIVR-115281