The study of gas flows is an issue that nowadays responds to the necessities of various fields of research, as aerospace engineering, climate studies, energy industries, etc. For this reason, the construction of mathematical models simulating the behavior of real gas mixtures is extremely useful. Among all possible approaches, the kinetic one, based on Boltzmann equations for species distribution functions, seems to be a very powerful tool. It allows, in fact, to describe mixtures starting from interaction among particles, with the possibility of deriving models for the behavior of the global system at observable level. The work of this thesis is devoted to considering results obtained so far for mixtures of gases and extending them considering more real-like cases, such as mixtures of monoatomic and polyatomic gas species, that may also interact inelastically or chemically. As first, we provide an introduction in which the basic concepts and the most relevant results for kinetic description of gases are presented, along with a more detailed summary of the work carried out in the thesis. In Chapter 1, we propose the study of a reacting mixture of four gases using the classical Boltzmann kinetic theory. This case was already analyzed when the four gases are considered to have the same number of internal energy levels. We generalize it allowing each of the gas species to have a different number of energetic levels. Chapter 2 and Chapter 3 are devoted to the study of gas mixtures using a kinetic approach of BGK type. In particular, in Chapter 2 we provide a BGK model for an inert mixture of monatomic and polyatomic gases. We prove the consistency of the model and analyze the stability of equilibria, then we derive macroscopic equations and perform some numerical simulations being inspired by real gases. In Chapter 3, instead, we propose two BGK models for mixtures of reacting gases. In the first one we have four gas species involved in a reversible chemical reaction, in the second case eight gases react through two disjoint reactions. The previous strategy is applied to both cases, the main differences are in proving the consistency of the model, since we face more complicate transcendental equations to determine all the parameters. Also in these cases, numerical simulations are performed to reproduce the behavior of real reacting mixtures. In the remaining part of the thesis, we study gas mixtures using different techniques. In Chapter 4 we consider a mixture of five gas species, three of them constituting a background medium in which the other two interact. Encounters among particles can be elastic, inelastic, or chemical and we suppose that they occur at different time scales. We write classical Boltzmann equations for the interacting components, we pass to the asymptotic diffusive limit and, by means of suitable integrations of the kinetic equations, we obtain reaction-diffusion equations for densities of the species. Specifically, we apply this procedure in three different hydrodynamic regimes, obtaining in each case a proper reaction-diffusion system. The stability properties of these systems are then studied in Chapter 5. We consider the possibility of having Turing instability for a suitable choice of internal energy amounts and of collision frequencies. Through numerical simulations, we verify the formation of spatial patterns in the evolution of the number densities of reactants, as predicted by Turing analysis. We conclude with some further observations and perspectives for a future development of the present research work.
Lo studio delle miscele di gas è un tema che oggigiorno risponde alle necessità di vari campi di ricerca, come l'ingegneria aerospaziale, gli studi climatici, le industrie energetiche, ecc. Per questo motivo la costruzione di modelli matematici che simulino il comportamento di gas reali si rivela estremamente utile. Tra tutti gli approcci possibili, quello cinetico, che si basa sulle equazioni di Boltzmann per le funzioni di distribuzione dei gas, rappresenta uno degli strumenti più validi. Esso permette, infatti, di descrivere miscele a partire dall'interazione tra particelle, per poi derivare modelli per le quantità osservabili. Il lavoro contenuto in questa tesi è volto a riprendere i risultati presenti in letteratura per miscele di gas e a estenderli considerando casi più realistici, come miscele di specie monoatomiche e poliatomiche, che interagiscono in modo inelastico o chimico. Per prima cosa, nell'introduzione vengono presentati i concetti basilari e i risultati più rilevanti per lo studio cinetico dei gas, insieme a una sintesi più dettagliata dei contenuti della tesi. Nel Capitolo 1 proponiamo lo studio di una miscela reattiva costituita da quattro gas utilizzando la classica teoria cinetica di Boltzmann. Questo problema è già stato analizzato nell’ipotesi in cui i gas hanno lo stesso numero di livelli di energia interna, lo affrontiamo nel caso più generale supponendo che ciascuna delle specie coinvolte abbia un diverso numero di livelli energetici. Nei due capitoli successivi vengono studiate miscele di gas utilizzando un approccio cinetico di tipo BGK. In particolare, nel Capitolo 2 forniamo un modello BGK per una miscela inerte di gas monoatomici e poliatomici. Dimostriamo la consistenza del modello e analizziamo la stabilità degli equilibri; deriviamo poi opportune equazioni macroscopiche ed eseguiamo alcune simulazioni numeriche ispirandoci ai gas reali. Nel Capitolo 3, invece, proponiamo due modelli BGK per miscele di gas reagenti. Nel primo consideriamo quattro specie di gas coinvolte in una reazione chimica reversibile, nel secondo otto gas che partecipano a due reazioni disgiunte. La procedura precedente viene applicata in entrambi i casi, la principale differenza risiede nel dimostrare la consistenza del modello, poiché si ottengono equazioni trascendenti più complicate per la determinazione di tutti i parametri. Anche in questo contesto vengono eseguite simulazioni numeriche che modellino il comportamento di miscele reattive reali. Nella parte restante della tesi, studiamo miscele di gas mediante tecniche ulteriori. Nel Capitolo 4 consideriamo una miscela di cinque specie di gas, di cui tre costituiscono il mezzo ospite in cui interagiscono le altre due. Gli urti tra le particelle possono essere di tipo elastico, inelastico o chimico e ipotizziamo che questi avvengano su scale temporali diverse. Successivamente, scriviamo le equazioni di Boltzmann classiche per le funzioni di distribuzione delle varie componenti. Dopo opportune integrazioni delle equazioni e tramite un passaggio al limite otteniamo equazioni di reazione-diffusione per le densità di specie. Nello specifico, applichiamo questo procedimento in tre diversi regimi idrodinamici, ottenendo per ciascuno di essi un diverso sistema di reazione-diffusione. Le proprietà di stabilità di tali sistemi vengono discusse nel Capitolo 5. Ci concentriamo in particolare sul verificarsi del fenomeno dell’instabilità di Turing per scelte opportune dei valori energetici e delle frequenze di collisione. Attraverso simulazioni numeriche, verifichiamo poi la formazione di pattern nell’evoluzione delle densità, come previsto dall'analisi di Turing. Concludiamo con alcune ulteriori osservazioni e prospettive per futuri sviluppi del presente lavoro di ricerca.
Modelli BGK ed equazioni di reazione-diffusione per miscele reagenti di gas monoatomici e poliatomici
TRAVAGLINI, ROMINA
2022
Abstract
The study of gas flows is an issue that nowadays responds to the necessities of various fields of research, as aerospace engineering, climate studies, energy industries, etc. For this reason, the construction of mathematical models simulating the behavior of real gas mixtures is extremely useful. Among all possible approaches, the kinetic one, based on Boltzmann equations for species distribution functions, seems to be a very powerful tool. It allows, in fact, to describe mixtures starting from interaction among particles, with the possibility of deriving models for the behavior of the global system at observable level. The work of this thesis is devoted to considering results obtained so far for mixtures of gases and extending them considering more real-like cases, such as mixtures of monoatomic and polyatomic gas species, that may also interact inelastically or chemically. As first, we provide an introduction in which the basic concepts and the most relevant results for kinetic description of gases are presented, along with a more detailed summary of the work carried out in the thesis. In Chapter 1, we propose the study of a reacting mixture of four gases using the classical Boltzmann kinetic theory. This case was already analyzed when the four gases are considered to have the same number of internal energy levels. We generalize it allowing each of the gas species to have a different number of energetic levels. Chapter 2 and Chapter 3 are devoted to the study of gas mixtures using a kinetic approach of BGK type. In particular, in Chapter 2 we provide a BGK model for an inert mixture of monatomic and polyatomic gases. We prove the consistency of the model and analyze the stability of equilibria, then we derive macroscopic equations and perform some numerical simulations being inspired by real gases. In Chapter 3, instead, we propose two BGK models for mixtures of reacting gases. In the first one we have four gas species involved in a reversible chemical reaction, in the second case eight gases react through two disjoint reactions. The previous strategy is applied to both cases, the main differences are in proving the consistency of the model, since we face more complicate transcendental equations to determine all the parameters. Also in these cases, numerical simulations are performed to reproduce the behavior of real reacting mixtures. In the remaining part of the thesis, we study gas mixtures using different techniques. In Chapter 4 we consider a mixture of five gas species, three of them constituting a background medium in which the other two interact. Encounters among particles can be elastic, inelastic, or chemical and we suppose that they occur at different time scales. We write classical Boltzmann equations for the interacting components, we pass to the asymptotic diffusive limit and, by means of suitable integrations of the kinetic equations, we obtain reaction-diffusion equations for densities of the species. Specifically, we apply this procedure in three different hydrodynamic regimes, obtaining in each case a proper reaction-diffusion system. The stability properties of these systems are then studied in Chapter 5. We consider the possibility of having Turing instability for a suitable choice of internal energy amounts and of collision frequencies. Through numerical simulations, we verify the formation of spatial patterns in the evolution of the number densities of reactants, as predicted by Turing analysis. We conclude with some further observations and perspectives for a future development of the present research work.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Romina_Travaglini.pdf
accesso aperto
Dimensione
2.6 MB
Formato
Adobe PDF
|
2.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/117883
URN:NBN:IT:UNIMORE-117883