L'ictus celebrale è la terza causa di morte dopo i decessi cardiovascolari e il cancro, e rappresenta una grave disabilà nell’epoca moderna [1]. Ogni anno in USA ed Europa ci sono tra i 200 e 300 nuovi casi ogni 100.000, in cui il 30% dei quali sopravvive con gravi invalidità e limitazioni sulle attività quotidiane, principalmente dovute ad un deterioramento del controllo motorio e alla perdita quindi, della destrezza nell’utilizzare gli arti [1, 2]. Considerando l’innalzamento dell’età media della popolazione, l’ictus rappresenta un fenomeno in via di crescita nei prossimi anni [2]. L’allenamento motorio post-ictus è diventato un bisogno primario sociale, basato sull’evidente beneficio che provoca sulla plasticità del sistema motorio a seguito di ictus [3]. Tipicamente i soggetti affetti da ictus ricevono delle cure fisioterapiche diversi mesi dopo lo stroke, per riuscire a migliorare le semi-paresi e per recuperare l’indipendenza motoria. Una relazione tra intensità ed effetto dei trattamenti si è instaurata tra la quantità di terapia individuale somministrata e il guadagno ottenuto nella mobilità motoria [4, 5, 6, 7, 8, 9]. E comunque da considerare che l’ammontare totale della terapia ricevuta, coinvolgendo direttamente il contatto diretto del fisioterapeuta, è limitato dai costi [10, 11, 12]. I pazienti tuttavia possono esercitarsi al di fuori delle sessioni fisioterapiche, ma i movimenti individuali sono particolarmente difficili per gli individui che non sono capaci di sollevare il proprio arto o con una minima mobilità alla mano, pertanto il contributo degli esercizi svolti a casa al fine del recupero motorio ha dato scarsi risultati [13, 14, 15]. E' necessario pertanto, sviluppare nuove strategie per la divulgazione delle terapie a basso costo, con l’obiettivo di permettere ai pazienti di esercitarsi per lungo tempo, massimizzando quindi il recupero motorio. Per far fronte a questo bisogno, nelle ultime due decadi si sono visti protagonisti un distinto numero di gruppi di ricerca ed industrie che hanno sviluppato dispositivi robotici per la riabilitazione di persone con disabilità (vedi revisioni [16, 17, 18, 19, 20, 21, 22]). La maggior parte di questo lavoro è incentrata nella riabilitazione dei movimenti a seguito di ictus poiché i sopravvissuti rappresentano una larga parte della popolazione presa in esame, sebbene vi siano altri lavori riguardanti il recupero motorio a seguito di paralisi celebrale infantile, sclerosi multipla e danni alla spina dorsale. Tipicamente sono tre gli obiettivi da raggiungere in questo settore: automatizzare la ripetibilità e l’arduo lavoro fisico della terapia, divulgare la terapia riabilitativa in più modi possibili, quantificare i risultati terapeutici con grande precisione. Dispositivi robotici sono stati sviluppati per assistere la riabilitazione di braccia, mani e gambe. Il paradigma più comune è utilizzare i dispositivi robotici per assistere fisicamente il completamento di movimenti desiderati di braccia, mani o gambe dei pazienti mentre svolgono dei giochi al computer. Diverse strategie di controllo sono state sviluppate (vedi revisione: [23]), e spaziano da robot che spostano rigidamente gli arti lungo un percorso predefinito, a robot che assistono il paziente solo se la performance di quest’ultimo non rientra dentro dei limiti spaziali o temporali, a robot che costruiscono un modello della disabilità del paziente. Due recenti revisioni del primo Randomized Controlled Trials (RCTs) di robot per la riabilitazione degli arti superiori hanno evidenziato che i risultati clinici sono distanti dall’essere soddisfacenti [21, 24]. Infatti, anche se il recupero motorio è maggiore nel gruppo della terapia robotica che in quello tradizionale, solo alcuni studi su pazienti in fase acuta e sub-acuta hanno dimostrato risultati positivi a livello funzionale (es. svolgimento delle attività quotidiane), complessivamente gli effetti complessivi sono tendenti a zero. Ciò suggerisce che le terapie, gli esercizi e i protocolli riabilitativi fin qui sviluppati devono essere ulteriormente perfezionati e ottimizzati. Due recenti sforzi in questa direzioni sono stati fatti: il controllo “assist-asneeded” proposto da Reinkensmayer per il Pneu-wrex, un esoscheletro ad attuazione pneumatica per la riabilitazione degli arti, e il controllo con assistenza progressiva in base alla performance del più famoso dispositivo riabilitativo per gli arti superiori il MIT-MANUS[25, 26, 27], il quale assiste il braccio del paziente nei movimenti svolti in un piano orizzontale. Il primo tipo di controllo permette di modulare lo sforzo del paziente mantenendolo vicino ad un percorso predefinito[28, 29]. Il secondo, è un metodo che adatta l’assistenza del robot alla performance del paziente (H.I. Krebs, unpublished conference presentation). Lo scopo di entrambi gli algoritmi è di incrementare lo sforzo e la partecipazione del paziente durante l’esecuzione degli esercizi. Forse, il problema fondamentale è che la terapia robotica non svolge un efficace progresso in questo senso è dovuto alla mancata conoscenza di come il motor learning funziona durante il lavoro di neuro-riabilitazione ad un livello tale da poter stabilire delle specifiche per la progettazione dei dispositivi robotici per la terapia [30]. Sappiamo che la ripetizione, con la partecipazione attiva del paziente, favorisce la riorganizzazione [31, 32]. Sappiamo che gli errori cinematici stimolano l’adattabilità motoria [33, 34, 35]. Alcuni esempi di correlazione tra sforzo del paziente o recupero dell’errore cinematico sono [34, 36, 37, 38]. In questi lavori, alcuni modelli matematici del comportamento di Soggetti sani o di Pazienti sono stati proposti e/o comparati con risultati sperimentali. Inoltre, ci sono anche dei test relativi all’utilizzo di feeback acustico per imparare ad eseguire dei task motori [39], anche se il sistema acustico è ancora largamente sottoutilizzato nei sistemi di riabilitazione robotica. I precisi processi di coinvolgimento mentale, le ripetizioni, gli errori cinematici e le informazioni sensoriali tradotte generalmente in un metodo di recupero non sono ancora state ben definite nella riabilitazione [30]. Il lavoro presentato in questa Tesi è la prima parte di una ricerca che ha come scopo principale di identificare i meccanismi chiave per determinare un coinvolgimento del paziente durante la terapia robotica assistita post-ictus, al fine di ottimizzare la progettazione dei dispositivi robotici. L’ipotesi chiave che sta dietro la ricerca è che il coinvolgimento del paziente e lo sforzo sono relazionati con le informazioni sensoriali fornite dal sistema robotico, e più il paziente sarà coinvolto più ci saranno degli incrementi nei benefici della terapia robotica assistita. Al fine di raggiungere questi risultati primari, è stata progettata una macchina planare a cavi per la riabilitazione degli arti superiori per pazienti post-ictus, abbastanza economica per l’utilizzo in ambulatorio. In questo dispositivo è stato progettato e perfezionato il controllo di tipo “assist-as-needed” per ottenere un controllore che coinvolga attivamente il paziente durante la terapia. Lo scopo finale di questo progetto sarà sviluppare una serie di equazioni matematiche che relazionino alcune variabili (es.: misurazioni del feedback) ad altre variabili (misura del coinvolgimento del paziente), per modellizzare il metodo comportamentale con cui il paziente interagisce con il robot. In questo modo si riuscirà a capire la risposta del paziente ad un livello sufficiente per dettare delle linee guida nella progettazione dei dispositivi robotici. Un punto fondamentale sarà definire le variabili impiegate per quantificare la partecipazione del paziente e gli ingressi sensoriali nel modello computazionale, e il loro metodo di misurazione. Per investigare su questo punto fondamentale è stata progettata un’interfaccia multi-feedback utilizzando un feedback sonoro per incrementare l’attenzione del paziente durante la terapia robotica assistita. Sono stati svolti dei test clinici con soggetti sani e pazienti post-stroke utilizzando la nuova interfaccia e il controllo “assist-as-needed” modificato. I risultati dei test hanno confermato le ipotesi iniziali: un’interfaccia multifeedback con il controllo “assist-as-needed” migliora le erformance dei pazienti durante la terapia robotica e il feedback sonoro incrementa l’attenzione durante gli esercizi. Uno step successivo del lavoro di Tesi, riguarderà il perfezionamento dell’interfaccia multi-feedback e del modello computazionale di controllo motorio per pazienti post-ictus.
CONTROLLO DI ROBOT PER LA RIABILITAZIONE DELL'ARTO SUPERIORE DI PAZIENTI POST-STROKE
SECOLI, RICCARDO
2010
Abstract
L'ictus celebrale è la terza causa di morte dopo i decessi cardiovascolari e il cancro, e rappresenta una grave disabilà nell’epoca moderna [1]. Ogni anno in USA ed Europa ci sono tra i 200 e 300 nuovi casi ogni 100.000, in cui il 30% dei quali sopravvive con gravi invalidità e limitazioni sulle attività quotidiane, principalmente dovute ad un deterioramento del controllo motorio e alla perdita quindi, della destrezza nell’utilizzare gli arti [1, 2]. Considerando l’innalzamento dell’età media della popolazione, l’ictus rappresenta un fenomeno in via di crescita nei prossimi anni [2]. L’allenamento motorio post-ictus è diventato un bisogno primario sociale, basato sull’evidente beneficio che provoca sulla plasticità del sistema motorio a seguito di ictus [3]. Tipicamente i soggetti affetti da ictus ricevono delle cure fisioterapiche diversi mesi dopo lo stroke, per riuscire a migliorare le semi-paresi e per recuperare l’indipendenza motoria. Una relazione tra intensità ed effetto dei trattamenti si è instaurata tra la quantità di terapia individuale somministrata e il guadagno ottenuto nella mobilità motoria [4, 5, 6, 7, 8, 9]. E comunque da considerare che l’ammontare totale della terapia ricevuta, coinvolgendo direttamente il contatto diretto del fisioterapeuta, è limitato dai costi [10, 11, 12]. I pazienti tuttavia possono esercitarsi al di fuori delle sessioni fisioterapiche, ma i movimenti individuali sono particolarmente difficili per gli individui che non sono capaci di sollevare il proprio arto o con una minima mobilità alla mano, pertanto il contributo degli esercizi svolti a casa al fine del recupero motorio ha dato scarsi risultati [13, 14, 15]. E' necessario pertanto, sviluppare nuove strategie per la divulgazione delle terapie a basso costo, con l’obiettivo di permettere ai pazienti di esercitarsi per lungo tempo, massimizzando quindi il recupero motorio. Per far fronte a questo bisogno, nelle ultime due decadi si sono visti protagonisti un distinto numero di gruppi di ricerca ed industrie che hanno sviluppato dispositivi robotici per la riabilitazione di persone con disabilità (vedi revisioni [16, 17, 18, 19, 20, 21, 22]). La maggior parte di questo lavoro è incentrata nella riabilitazione dei movimenti a seguito di ictus poiché i sopravvissuti rappresentano una larga parte della popolazione presa in esame, sebbene vi siano altri lavori riguardanti il recupero motorio a seguito di paralisi celebrale infantile, sclerosi multipla e danni alla spina dorsale. Tipicamente sono tre gli obiettivi da raggiungere in questo settore: automatizzare la ripetibilità e l’arduo lavoro fisico della terapia, divulgare la terapia riabilitativa in più modi possibili, quantificare i risultati terapeutici con grande precisione. Dispositivi robotici sono stati sviluppati per assistere la riabilitazione di braccia, mani e gambe. Il paradigma più comune è utilizzare i dispositivi robotici per assistere fisicamente il completamento di movimenti desiderati di braccia, mani o gambe dei pazienti mentre svolgono dei giochi al computer. Diverse strategie di controllo sono state sviluppate (vedi revisione: [23]), e spaziano da robot che spostano rigidamente gli arti lungo un percorso predefinito, a robot che assistono il paziente solo se la performance di quest’ultimo non rientra dentro dei limiti spaziali o temporali, a robot che costruiscono un modello della disabilità del paziente. Due recenti revisioni del primo Randomized Controlled Trials (RCTs) di robot per la riabilitazione degli arti superiori hanno evidenziato che i risultati clinici sono distanti dall’essere soddisfacenti [21, 24]. Infatti, anche se il recupero motorio è maggiore nel gruppo della terapia robotica che in quello tradizionale, solo alcuni studi su pazienti in fase acuta e sub-acuta hanno dimostrato risultati positivi a livello funzionale (es. svolgimento delle attività quotidiane), complessivamente gli effetti complessivi sono tendenti a zero. Ciò suggerisce che le terapie, gli esercizi e i protocolli riabilitativi fin qui sviluppati devono essere ulteriormente perfezionati e ottimizzati. Due recenti sforzi in questa direzioni sono stati fatti: il controllo “assist-asneeded” proposto da Reinkensmayer per il Pneu-wrex, un esoscheletro ad attuazione pneumatica per la riabilitazione degli arti, e il controllo con assistenza progressiva in base alla performance del più famoso dispositivo riabilitativo per gli arti superiori il MIT-MANUS[25, 26, 27], il quale assiste il braccio del paziente nei movimenti svolti in un piano orizzontale. Il primo tipo di controllo permette di modulare lo sforzo del paziente mantenendolo vicino ad un percorso predefinito[28, 29]. Il secondo, è un metodo che adatta l’assistenza del robot alla performance del paziente (H.I. Krebs, unpublished conference presentation). Lo scopo di entrambi gli algoritmi è di incrementare lo sforzo e la partecipazione del paziente durante l’esecuzione degli esercizi. Forse, il problema fondamentale è che la terapia robotica non svolge un efficace progresso in questo senso è dovuto alla mancata conoscenza di come il motor learning funziona durante il lavoro di neuro-riabilitazione ad un livello tale da poter stabilire delle specifiche per la progettazione dei dispositivi robotici per la terapia [30]. Sappiamo che la ripetizione, con la partecipazione attiva del paziente, favorisce la riorganizzazione [31, 32]. Sappiamo che gli errori cinematici stimolano l’adattabilità motoria [33, 34, 35]. Alcuni esempi di correlazione tra sforzo del paziente o recupero dell’errore cinematico sono [34, 36, 37, 38]. In questi lavori, alcuni modelli matematici del comportamento di Soggetti sani o di Pazienti sono stati proposti e/o comparati con risultati sperimentali. Inoltre, ci sono anche dei test relativi all’utilizzo di feeback acustico per imparare ad eseguire dei task motori [39], anche se il sistema acustico è ancora largamente sottoutilizzato nei sistemi di riabilitazione robotica. I precisi processi di coinvolgimento mentale, le ripetizioni, gli errori cinematici e le informazioni sensoriali tradotte generalmente in un metodo di recupero non sono ancora state ben definite nella riabilitazione [30]. Il lavoro presentato in questa Tesi è la prima parte di una ricerca che ha come scopo principale di identificare i meccanismi chiave per determinare un coinvolgimento del paziente durante la terapia robotica assistita post-ictus, al fine di ottimizzare la progettazione dei dispositivi robotici. L’ipotesi chiave che sta dietro la ricerca è che il coinvolgimento del paziente e lo sforzo sono relazionati con le informazioni sensoriali fornite dal sistema robotico, e più il paziente sarà coinvolto più ci saranno degli incrementi nei benefici della terapia robotica assistita. Al fine di raggiungere questi risultati primari, è stata progettata una macchina planare a cavi per la riabilitazione degli arti superiori per pazienti post-ictus, abbastanza economica per l’utilizzo in ambulatorio. In questo dispositivo è stato progettato e perfezionato il controllo di tipo “assist-as-needed” per ottenere un controllore che coinvolga attivamente il paziente durante la terapia. Lo scopo finale di questo progetto sarà sviluppare una serie di equazioni matematiche che relazionino alcune variabili (es.: misurazioni del feedback) ad altre variabili (misura del coinvolgimento del paziente), per modellizzare il metodo comportamentale con cui il paziente interagisce con il robot. In questo modo si riuscirà a capire la risposta del paziente ad un livello sufficiente per dettare delle linee guida nella progettazione dei dispositivi robotici. Un punto fondamentale sarà definire le variabili impiegate per quantificare la partecipazione del paziente e gli ingressi sensoriali nel modello computazionale, e il loro metodo di misurazione. Per investigare su questo punto fondamentale è stata progettata un’interfaccia multi-feedback utilizzando un feedback sonoro per incrementare l’attenzione del paziente durante la terapia robotica assistita. Sono stati svolti dei test clinici con soggetti sani e pazienti post-stroke utilizzando la nuova interfaccia e il controllo “assist-as-needed” modificato. I risultati dei test hanno confermato le ipotesi iniziali: un’interfaccia multifeedback con il controllo “assist-as-needed” migliora le erformance dei pazienti durante la terapia robotica e il feedback sonoro incrementa l’attenzione durante gli esercizi. Uno step successivo del lavoro di Tesi, riguarderà il perfezionamento dell’interfaccia multi-feedback e del modello computazionale di controllo motorio per pazienti post-ictus.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Dottorato.pdf
accesso aperto
Dimensione
8.32 MB
Formato
Adobe PDF
|
8.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/118326
URN:NBN:IT:UNIPD-118326