Lo scopo di questo lavoro consiste nel verificare la possibilità di utilizzare le vibrazioni meccaniche come strumento utile per effettuare test non distruttivi su solidi continui, al fine di individuare cricche e discontinuità, adottando una strumentazione adatta ad ambienti debolmente controllati come cave e cantieri, partendo dal principio intuitivamente semplice che un qualsiasi oggetto ha delle frequenze proprie alle quali vibra se sollecitato e che tali frequenze cambiano se, nello stesso oggetto, intervengono delle discontinuità. La finalità è quella di indagare la possibilità di rendere oggettivo e standardizzato questo metodo intuitivo. Per far ciò si è deciso di operare per confronto, passando attraverso la definizione, validazione e scelta di un modello, reale o virtuale (FEM - Finite Element Method), per ottenere una funzione di risposta in frequenza campione, da utilizzare come riferimento e termine di paragone. Il passo successivo consiste nel confronto fra modello fisico, preferito al FEM, e dei blocchi con fratture evidenti, per identificare le differenze fra i diversi tipi di provini e riconoscere la presenza della frattura. Infine, si sono confrontati modello fisico e blocchi con discontinuità evidenti, per localizzare la posizione della frattura.

Metodologie non distruttive per la diagnostica di continui mediante misure accelerometriche e/o acustiche

BODINI, ILEANA
2010

Abstract

Lo scopo di questo lavoro consiste nel verificare la possibilità di utilizzare le vibrazioni meccaniche come strumento utile per effettuare test non distruttivi su solidi continui, al fine di individuare cricche e discontinuità, adottando una strumentazione adatta ad ambienti debolmente controllati come cave e cantieri, partendo dal principio intuitivamente semplice che un qualsiasi oggetto ha delle frequenze proprie alle quali vibra se sollecitato e che tali frequenze cambiano se, nello stesso oggetto, intervengono delle discontinuità. La finalità è quella di indagare la possibilità di rendere oggettivo e standardizzato questo metodo intuitivo. Per far ciò si è deciso di operare per confronto, passando attraverso la definizione, validazione e scelta di un modello, reale o virtuale (FEM - Finite Element Method), per ottenere una funzione di risposta in frequenza campione, da utilizzare come riferimento e termine di paragone. Il passo successivo consiste nel confronto fra modello fisico, preferito al FEM, e dei blocchi con fratture evidenti, per identificare le differenze fra i diversi tipi di provini e riconoscere la presenza della frattura. Infine, si sono confrontati modello fisico e blocchi con discontinuità evidenti, per localizzare la posizione della frattura.
29-gen-2010
Italiano
FRF Diagnostica
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
Tesi.pdf

accesso aperto

Dimensione 7.37 MB
Formato Adobe PDF
7.37 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/118355
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-118355