The scientific community is presently strongly interested in the research of new microwave imaging methods, in order to develop reliable, safe, portable, and cost-effective tools for the non-invasive/non-destructive diagnostic in many fields (such as medicine, civil and industrial engineering, …). In this framework, microwave imaging techniques addressing the full three-dimensional nature of the inspected bodies are still very challenging, since they need to cope with significant computational complexity. Moreover, non-linearity and ill-posedness issues, which usually affects the related inverse scattering problems, need to be faced, too. Another promising topic is the development of phaseless methods, in which only the amplitude of the electric field is assumed to be measurable. This leads to a significant complexity reduction and lower cost for the experimental apparatuses, but the missing information on the phase of the electric field samples exacerbates the ill-posedness problems. In the present Thesis, a novel inexact-Newton inversion algorithm is proposed, in which the iteratively linearized problems are solved in a regularized sense by using a truncated Landweber or a conjugate gradient method developed in the framework of the l^p Banach spaces. This is an improvement that allows to generalize the classic framework of the l^2 Hilbert spaces in which the inexact-Newton approaches are usually defined. The applicability of the proposed imaging method in both the 3D full-vector and 2D phaseless scenarios at microwave frequencies is assessed in this Thesis, and an extensive validation of the proposed imaging method against both synthetic and experimental data is presented, highlighting the advantages over the inexact-Newton scheme developed in the classic framework of the l^2 Hilbert spaces.

Novel Inverse-Scattering Methods in Banach Spaces

TAVANTI, EMANUELE
2019

Abstract

The scientific community is presently strongly interested in the research of new microwave imaging methods, in order to develop reliable, safe, portable, and cost-effective tools for the non-invasive/non-destructive diagnostic in many fields (such as medicine, civil and industrial engineering, …). In this framework, microwave imaging techniques addressing the full three-dimensional nature of the inspected bodies are still very challenging, since they need to cope with significant computational complexity. Moreover, non-linearity and ill-posedness issues, which usually affects the related inverse scattering problems, need to be faced, too. Another promising topic is the development of phaseless methods, in which only the amplitude of the electric field is assumed to be measurable. This leads to a significant complexity reduction and lower cost for the experimental apparatuses, but the missing information on the phase of the electric field samples exacerbates the ill-posedness problems. In the present Thesis, a novel inexact-Newton inversion algorithm is proposed, in which the iteratively linearized problems are solved in a regularized sense by using a truncated Landweber or a conjugate gradient method developed in the framework of the l^p Banach spaces. This is an improvement that allows to generalize the classic framework of the l^2 Hilbert spaces in which the inexact-Newton approaches are usually defined. The applicability of the proposed imaging method in both the 3D full-vector and 2D phaseless scenarios at microwave frequencies is assessed in this Thesis, and an extensive validation of the proposed imaging method against both synthetic and experimental data is presented, highlighting the advantages over the inexact-Newton scheme developed in the classic framework of the l^2 Hilbert spaces.
25-feb-2019
Inglese
RANDAZZO, ANDREA
RAFFETTO, MIRCO
MARCHESE, MARIO
Università degli studi di Genova
File in questo prodotto:
File Dimensione Formato  
phd.unige_3356113.pdf

accesso aperto

Dimensione 7.92 MB
Formato Adobe PDF
7.92 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/122008
Il codice NBN di questa tesi è URN:NBN:IT:UNIGE-122008