Novel keratin-based 3D scaffold for bone tissue engineering have been produced, characterized and tested, applying bio-mechanical stimuli generated by a pulsed electromagnetic field (PEMF). Controlled-size, interconnected porosity, tailored to match the natural bone tissue features, has been designed for cell guesting, proliferation and guided tissue formation, exploiting the natural histological structure of the wool fibers. Additional crosslinking of the keratin chains allowed obtaining excellent water stability and significant swelling due to the synergic contribution of hydrophilicity and porosity, associated to increased compression resilience and ageing resistance. Keratin contains cellular-binding motifs for cell attachment found in the native extra-cellular matrix which facilitate better growth, providing proliferation signals and minimising apoptotic cell death. Viability and consistent proliferation were observed for SAOS-2 human osteoblast cells cultured both in proliferative (PM) and osteogenic (OM) media, highlighted by PEMF application, especially in osteogenic conditions, with increased mineralization and higher ECM proteins deposition. PEMF stimulated an earlier differentiation in osteogenic conditions, showing a perfect synergy between biochemical and mechanical stimuli in acceleration of the differentiation process. Evaluation of the attachment and growth of human bone marrow mesenchymal cells on different 2D and 3D keratin-based scaffolds, made with wool fibril films, sponges and hydrogels, showed that keratin-based materials are an effective support for stem cell growth. In particular, 3D systems gave the best results and, thanks to the different ageing time, they can be suitable as cell delivery system or for long-term scaffolding. The longer degradation rate suggests that wool fibril sponges can be promising candidates for long-term support of bone formation in vivo.
In questo lavoro di tesi è stato progettato e caratterizzato uno scaffold 3D di cheratina innovativo tramite un approccio bio-ingegneristico integrato che unisce anche lo stimolo bio-meccanico generato da un campo elettromagnetico pulsato (PEMF). Lo scaffold è stato preparato mediante la fibrillazione di fibre di lana (cheratina) sfruttando i componenti istologici che le compongono (fibrille o cellule corticali), al fine di ottenere una struttura adatta alla rigenerazione ossea. E’ stato quindi progettato uno scaffold di cheratina (spugna di fibrille di lana) con micro e macro-porosità interconnesse di dimensione controllata, al fine di ospitare le cellule, favorendone l’adesione e guidando opportunamente la formazione di nuovo tessuto. Crosslinks aggiuntivi impartiti alle catene cheratiniche hanno permesso di ottenere uno scaffold con eccellente stabilità in acqua nonostante l’elevato rigonfiamento, resilienza alla compressione e stabilità alla degradazione. La cheratina contiene sequenze di adesione cellulare che facilitano la crescita delle cellule. Infatti, cellule SAOS-2 coltivate sulle spugne di fibrille di lana in condizioni proliferative (PM) e osteoinduttive (OM), hanno mostrato rispettivamente una crescita e differenziamento ottimali. Il differenziamento, in termini di aumento della mineralizzazione e deposizione di proteine della matrice è stimolato dall’applicazione del PEMF. Lo stimolo bio-meccanico velocizza il processo di differenziamento in condizioni osteoinduttive, mostrando una perfetta sinergia tra gli stimoli biochimici e meccanici nell’accelerazione del processo differenziativo. La valutazione della crescita di cellule staminali da midollo osseo su scaffold di cheratina 2D e 3D (film di fibrille di lana e idrogeli di cheratina) ha mostrato la loro efficacia nel supportare le cellule staminali; in particolare, i sistemi 3D, grazie al loro diverso tempo di degradazione, possono funzionare da cell-delivery system o da impalcatura a lungo termine. L’elevato tempo di degradazione mostrato dalla spugna di fibrille di lana suggerisce che questo scaffold possa essere promettente come supporto a lungo termine per la formazione ossea in vivo.
KERATIN-BASED 3D SCAFFOLD DESIGN FOR BONE TISSUE ENGINEERING
PATRUCCO, ALESSIA
2017
Abstract
Novel keratin-based 3D scaffold for bone tissue engineering have been produced, characterized and tested, applying bio-mechanical stimuli generated by a pulsed electromagnetic field (PEMF). Controlled-size, interconnected porosity, tailored to match the natural bone tissue features, has been designed for cell guesting, proliferation and guided tissue formation, exploiting the natural histological structure of the wool fibers. Additional crosslinking of the keratin chains allowed obtaining excellent water stability and significant swelling due to the synergic contribution of hydrophilicity and porosity, associated to increased compression resilience and ageing resistance. Keratin contains cellular-binding motifs for cell attachment found in the native extra-cellular matrix which facilitate better growth, providing proliferation signals and minimising apoptotic cell death. Viability and consistent proliferation were observed for SAOS-2 human osteoblast cells cultured both in proliferative (PM) and osteogenic (OM) media, highlighted by PEMF application, especially in osteogenic conditions, with increased mineralization and higher ECM proteins deposition. PEMF stimulated an earlier differentiation in osteogenic conditions, showing a perfect synergy between biochemical and mechanical stimuli in acceleration of the differentiation process. Evaluation of the attachment and growth of human bone marrow mesenchymal cells on different 2D and 3D keratin-based scaffolds, made with wool fibril films, sponges and hydrogels, showed that keratin-based materials are an effective support for stem cell growth. In particular, 3D systems gave the best results and, thanks to the different ageing time, they can be suitable as cell delivery system or for long-term scaffolding. The longer degradation rate suggests that wool fibril sponges can be promising candidates for long-term support of bone formation in vivo.File | Dimensione | Formato | |
---|---|---|---|
Alessia Patrucco PhD Thesis.pdf
Open Access dal 31/07/2018
Dimensione
5.09 MB
Formato
Adobe PDF
|
5.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/122406
URN:NBN:IT:UNIPV-122406