This work investigates the application of computational methods for structured and unstructured data. The domains of application are two closely connected fields with the common goal of promoting the stability of the financial system: systemic risk and bank supervision. The work explores different families of models and applies them to different tasks: graphical Gaussian network models to address bank interconnectivity, topic models to monitor bank news and deep learning for text classification. New applications and variants of these models are investigated posing a particular attention on the combined use of textual and structured data. In the penultimate chapter is introduced a sentiment polarity classification tool in Italian, based on deep learning, to simplify future researches relying on sentiment analysis. The different models have proven useful for leveraging numerical (structured) and textual (unstructured) data. Graphical Gaussian Models and Topic models have been adopted for inspection and descriptive tasks while deep learning has been applied more for predictive (classification) problems. Overall, the integration of textual (unstructured) and numerical (structured) information has proven useful for systemic risk and bank supervision related analysis. The integration of textual data with numerical data in fact, has brought either to higher predictive performances or enhanced capability of explaining phenomena and correlating them to other events.

This work investigates the application of computational methods for structured and unstructured data. The domains of application are two closely connected fields with the common goal of promoting the stability of the financial system: systemic risk and bank supervision. The work explores different families of models and applies them to different tasks: graphical Gaussian network models to address bank interconnectivity, topic models to monitor bank news and deep learning for text classification. New applications and variants of these models are investigated posing a particular attention on the combined use of textual and structured data. In the penultimate chapter is introduced a sentiment polarity classification tool in Italian, based on deep learning, to simplify future researches relying on sentiment analysis. The different models have proven useful for leveraging numerical (structured) and textual (unstructured) data. Graphical Gaussian Models and Topic models have been adopted for inspection and descriptive tasks while deep learning has been applied more for predictive (classification) problems. Overall, the integration of textual (unstructured) and numerical (structured) information has proven useful for systemic risk and bank supervision related analysis. The integration of textual data with numerical data in fact, has brought either to higher predictive performances or enhanced capability of explaining phenomena and correlating them to other events.

Six papers on computational methods for the analysis of structured and unstructured data in the economic domain

NICOLA, GIANCARLO
2019

Abstract

This work investigates the application of computational methods for structured and unstructured data. The domains of application are two closely connected fields with the common goal of promoting the stability of the financial system: systemic risk and bank supervision. The work explores different families of models and applies them to different tasks: graphical Gaussian network models to address bank interconnectivity, topic models to monitor bank news and deep learning for text classification. New applications and variants of these models are investigated posing a particular attention on the combined use of textual and structured data. In the penultimate chapter is introduced a sentiment polarity classification tool in Italian, based on deep learning, to simplify future researches relying on sentiment analysis. The different models have proven useful for leveraging numerical (structured) and textual (unstructured) data. Graphical Gaussian Models and Topic models have been adopted for inspection and descriptive tasks while deep learning has been applied more for predictive (classification) problems. Overall, the integration of textual (unstructured) and numerical (structured) information has proven useful for systemic risk and bank supervision related analysis. The integration of textual data with numerical data in fact, has brought either to higher predictive performances or enhanced capability of explaining phenomena and correlating them to other events.
10-giu-2019
Inglese
This work investigates the application of computational methods for structured and unstructured data. The domains of application are two closely connected fields with the common goal of promoting the stability of the financial system: systemic risk and bank supervision. The work explores different families of models and applies them to different tasks: graphical Gaussian network models to address bank interconnectivity, topic models to monitor bank news and deep learning for text classification. New applications and variants of these models are investigated posing a particular attention on the combined use of textual and structured data. In the penultimate chapter is introduced a sentiment polarity classification tool in Italian, based on deep learning, to simplify future researches relying on sentiment analysis. The different models have proven useful for leveraging numerical (structured) and textual (unstructured) data. Graphical Gaussian Models and Topic models have been adopted for inspection and descriptive tasks while deep learning has been applied more for predictive (classification) problems. Overall, the integration of textual (unstructured) and numerical (structured) information has proven useful for systemic risk and bank supervision related analysis. The integration of textual data with numerical data in fact, has brought either to higher predictive performances or enhanced capability of explaining phenomena and correlating them to other events.
CERCHIELLO, PAOLA
Università degli studi di Pavia
File in questo prodotto:
File Dimensione Formato  
PhD thesis Giancarlo Nicola.pdf

accesso aperto

Dimensione 9.96 MB
Formato Adobe PDF
9.96 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/122422
Il codice NBN di questa tesi è URN:NBN:IT:UNIPV-122422