In this Ph.D. thesis we review the Anderson localization problem and its relevance in the current panorama of Physics; we discuss the single- and many-body problem and the features of the localization transition. We discuss in detail the forward approximation of the locator expansion, showing how it is a powerful tool for inspecting both the single- and the many-body localization transition. We analyze its predictions in the Bethe lattice, in the hypercubic lattice, and in a many-body Heisenberg model. The approximation provides an upper bound for the transition point; this result becomes increasingly accurate as the dimensionality of the system increases. We also find that the forward approximation result can be closely approximated by a single term as long as cancellations in the full series expansion are not relevant (this happens in the single particle Anderson systems but not in the many-body case). Moreover, we study a system interacting with a mesoscopic bath which shows peculiar localization properties; this is done both analytically through the forward approximation and numerically through exact diagonalization techniques. We find that, as the coupling with the bath increases, the system goes through a crossover between two mechanisms for localization, i.e. from Anderson to Zeno localization. The stability of the localized state is a non-monotonic function of the coupling with the bath, as the increasing hybridization of the bath states allows different particle hopping processes.
Investigating Localization Transitions with the Forward Approximation
Pietracaprina, Francesca
2015
Abstract
In this Ph.D. thesis we review the Anderson localization problem and its relevance in the current panorama of Physics; we discuss the single- and many-body problem and the features of the localization transition. We discuss in detail the forward approximation of the locator expansion, showing how it is a powerful tool for inspecting both the single- and the many-body localization transition. We analyze its predictions in the Bethe lattice, in the hypercubic lattice, and in a many-body Heisenberg model. The approximation provides an upper bound for the transition point; this result becomes increasingly accurate as the dimensionality of the system increases. We also find that the forward approximation result can be closely approximated by a single term as long as cancellations in the full series expansion are not relevant (this happens in the single particle Anderson systems but not in the many-body case). Moreover, we study a system interacting with a mesoscopic bath which shows peculiar localization properties; this is done both analytically through the forward approximation and numerically through exact diagonalization techniques. We find that, as the coupling with the bath increases, the system goes through a crossover between two mechanisms for localization, i.e. from Anderson to Zeno localization. The stability of the localized state is a non-monotonic function of the coupling with the bath, as the increasing hybridization of the bath states allows different particle hopping processes.File | Dimensione | Formato | |
---|---|---|---|
1963_35055_phd_pietracaprina-2.pdf
accesso aperto
Dimensione
2.46 MB
Formato
Adobe PDF
|
2.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/122741
URN:NBN:IT:SISSA-122741