In this Thesis we discuss the Bose-Einstein condensation (BEC) in the Thomas-Fermi limit for a many-body system, both in the stationary and in the dynamical framework. In particular, we prove that if the pair interaction is of the form $ g_N N^{3beta-1}(N^beta x) $, with $ g_N $ growing as $ N $ goes to infinity and $ beta $ smaller than 1/3 there is BEC in the ground state of a system in a box. We also prove that in a trapped system, if there is BEC in the initial datum, BEC is preserved, at least for $ beta $ smaller than 1/6.

Mathematics of the Bose Gas in the Thomas-Fermi Regime

Dimonte, Daniele
2019

Abstract

In this Thesis we discuss the Bose-Einstein condensation (BEC) in the Thomas-Fermi limit for a many-body system, both in the stationary and in the dynamical framework. In particular, we prove that if the pair interaction is of the form $ g_N N^{3beta-1}(N^beta x) $, with $ g_N $ growing as $ N $ goes to infinity and $ beta $ smaller than 1/3 there is BEC in the ground state of a system in a box. We also prove that in a trapped system, if there is BEC in the initial datum, BEC is preserved, at least for $ beta $ smaller than 1/6.
27-set-2019
Inglese
Correggi, Michele
SISSA
Trieste
File in questo prodotto:
File Dimensione Formato  
Thesis.pdf

accesso aperto

Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/123070
Il codice NBN di questa tesi è URN:NBN:IT:SISSA-123070