The interest of statistical physics for combinatorial optimization is not new, it suffices to think of a famous tool as simulated annealing. Recently, it has also resorted to statistical inference to address some "hard" optimization problems, developing a new class of message passing algorithms. Three applications to computational biology are presented in this thesis, namely: 1) Boolean networks, a model for gene regulatory networks; 2) haplotype inference, to study the genetic information present in a population; 3) clustering, a general machine learning tool.
Statistical physics methods in computational biology
Zagordi, Osvaldo
2007
Abstract
The interest of statistical physics for combinatorial optimization is not new, it suffices to think of a famous tool as simulated annealing. Recently, it has also resorted to statistical inference to address some "hard" optimization problems, developing a new class of message passing algorithms. Three applications to computational biology are presented in this thesis, namely: 1) Boolean networks, a model for gene regulatory networks; 2) haplotype inference, to study the genetic information present in a population; 3) clustering, a general machine learning tool.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1963_2666_thesis_zagordi.pdf
accesso aperto
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/123235
Il codice NBN di questa tesi è
URN:NBN:IT:SISSA-123235