This thesis is concerned with three different problems in sub-Riemannian geometry faced during my PhD. The first one is a problem in differential geometry and is about the local conformal classification of a certain class of sub-Riemannian structures. In the second one we deal with topology, and our main result establish some path-fibration properties for the Endpoint map. In the third and last problem, we begin the development of some variational calculus around critical points of the endpoint map, called abnormal controls, and we estabilish a counterpart of the classical Morse deformation techniques and of the Min-Max variational principle.

Topics in sub-Riemannian geometry

Boarotto, Francesco
2016

Abstract

This thesis is concerned with three different problems in sub-Riemannian geometry faced during my PhD. The first one is a problem in differential geometry and is about the local conformal classification of a certain class of sub-Riemannian structures. In the second one we deal with topology, and our main result establish some path-fibration properties for the Endpoint map. In the third and last problem, we begin the development of some variational calculus around critical points of the endpoint map, called abnormal controls, and we estabilish a counterpart of the classical Morse deformation techniques and of the Min-Max variational principle.
30-set-2016
Inglese
Agrachev, Andrey
SISSA
Trieste
File in questo prodotto:
File Dimensione Formato  
1963_35227_Thesis.pdf

accesso aperto

Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/123533
Il codice NBN di questa tesi è URN:NBN:IT:SISSA-123533