In this thesis we build a Kolyvagin system for the Galois representation attached to a Hida family of modular forms, starting from the big Heegner point Euler system of Longo and Vigni built in towers of Shimura curves. We generalize the work of Buyukboduk to a quaternionic setting, relaxing the classical Heegner hypothesis on the tame conductor of the family. As a byproduct of this construction, we give a proof of one divisibility of the anticyclotomic Iwasawa main conjecture for Hida families.

Quaternionic Kolyvagin systems and Iwasawa theory for Hida families

ZERMAN, FRANCESCO
2024

Abstract

In this thesis we build a Kolyvagin system for the Galois representation attached to a Hida family of modular forms, starting from the big Heegner point Euler system of Longo and Vigni built in towers of Shimura curves. We generalize the work of Buyukboduk to a quaternionic setting, relaxing the classical Heegner hypothesis on the tame conductor of the family. As a byproduct of this construction, we give a proof of one divisibility of the anticyclotomic Iwasawa main conjecture for Hida families.
13-feb-2024
Inglese
VIGNI, STEFANO
VIGNI, STEFANO
Università degli studi di Genova
File in questo prodotto:
File Dimensione Formato  
phdunige_4949156.pdf

accesso aperto

Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/125815
Il codice NBN di questa tesi è URN:NBN:IT:UNIGE-125815