Background and purpose: Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the main regulators of LDL receptor metabolism, has been associated with atherosclerosis development. Several studies have confirmed such association through both lipid and non-lipid pathways. However, the direct relationships between circulating PCSK9 and markers of subclinical and clinical atherosclerosis are still matter of debate. Therefore, we investigated the relationships between plasma PCSK9 levels and some indexes of subclinical (imaging markers) and clinical (vascular events; VEs) atherosclerosis. Another objective was the identification of the independent determinants of PCSK9, with particular attention to lipids and inflammatory biomarkers. Finally, we also assessed the relationship between some imaging markers and four SNPs of the PCSK9 gene, known to be associated with the presence of low levels of LDL-cholesterol. In order to validate the results obtained in this last part, the genetic analyses were replicated in an independent cohort recruited in the United Kingdom (UK). Methods: The study was carried out taking advantage of databases, biobanks and imaging-bank of the IMPROVE study. 3,703 European subjects (54-79 years; 48% men), free of VEs at baseline and defined at high risk for the presence of at least three vascular risk factors, were recruited and followed-up for 36 months. PCSK9 was measured by ELISA and log-transformed prior to analyses. Conventional imaging markers [carotid intima-media thickness (cIMT) and carotid plaque-size], and emerging imaging markers [cIMT change over time, echolucency of the intima-media thickess of common carotid measured in plaque free areas (PF CC-IMTmean), echolucency of the biggest plaque detected in the whole carotid tree, and carotid calcium score (cCS)] were measured on ultrasonographic scans stored in the imaging-bank. In particular, echolucency was measured in terms of grey scale median (GSM) of pixels distribution of a specific region of interest, whereas cCS was calculated as sum of lengths of acoustic shadow cones generated by calcium within carotid plaques. Lipids were measured with enzymatic methods (except for LDL-cholesterol, which was calculated by Friedewald's formula). Among inflammatory markers, high-sensitivity C-reactive protein (hs-CRP) was measured by turbidimetry, whereas white blood cells (WBC) count and the leukocyte formula had already been measured locally. All the IMPROVE study and UK (n=22,179; 48% men) subjects have been genotyped. Results: In the univariate analysis, PCSK9 was positively correlated with total, LDL-, and HDL-cholesterol, and with triglycerides and basophils (all p <0.0001), whereas was negatively correlated with neutrophils and eosinophils (both p=0.04). The positive correlations observed with hs-CRP and WBC count were just close to the statistical significance (p=0.060 and 0.064, respectively). Fibrates or statins therapies (positively; both p <0.0001), as well as male sex and family history of diabetes (negatively; both p <0.05) were the strongest independent predictors of plasma PCSK9 levels. In the unadjusted analysis, a negative correlation was observed between PCSK9 levels and basal cIMT variables (i.e. carotid IMTmean, IMTmax, IMTmean-max, and PF CC-IMTmean), a negative correlation between PCSK9 and cIMT change over time (Fastest-IMTmax-progr) and cCS (all p ≤0.01), whereas a positive trend was observed between PCSK9 and GSM of both PF CC-IMTmean and carotid plaque (both p ≤0.0001). The cCS (positively) and the GSM of PF CC-IMTmean (positively) were significantly (or almost significantly) associated with PCSK9 in several multivariate models (all p ≤0.064). All correlations observed in the univariate analysis between PCSK9 and basal cIMT variables, Fastest-IMTmax-progr and GSM of carotid plaque lost the statistical significance after adjustment for age, sex, latitude, and other potential confounders. During the follow-up [median (interquartile range): 3.01 (2.98; 3.12) years], 215 VEs were recorded: 125 coronary, 73 cerebral and 17 peripheral VEs. Among these, 37 were hard events (i.e. myocardial infarction, sudden death and stroke). In the unadjusted analysis, PCSK9 was positively associated with combined and coronary events (both p <0.01), but not with cerebrovascular events. Also in this case, however, all the associations observed lost the statistical significance after adjustment of the analyses for age, sex, and stratification for latitude. The lack of association with VEs was confirmed also in the model adjusted for all confounding factors considered, and in the analyses focused on hard events. With regard to the role of genetic variants, none of the four SNPs considered was correlated with cIMT (i.e. IMTmean, IMTmax, IMTmean-max) when the analysis was performed in the subjects recruited in the IMPROVE study. The rs11591147 variant, by contrast, was negatively correlated with IMTmax measured in the UK population (p=0.002). By combining the four genetic variants in a score, the relationship with cIMT was not significant in the IMPROVE study, whereas was negative and significant in the UK population (all p <0.01). Conclusions: Plasma PCSK9 levels are not associated with VEs. Regarding markers of subclinical atherosclerosis, PCSK9 levels are associated neither with lesion size, nor with carotid plaque echolucency, but are associated with echolucency of carotid wall thickness and with carotid calcium score. Therefore, further studies are needed to better understand the role of such circulating proprotein in carotid wall thickness echolucency and in carotid calcium score. Fibrates or statins therapies, as well as male sex and family history of diabetes are the strongest independent predictors of PCSK9 levels. The associations, previously observed, between circulating PCSK9 and some lipid and inflammatory markers have been confirmed. The relationship between plasma levels of PCSK9 and other inflammatory markers (neutrophils, basophils and eosinophils) deserves further investigation, as does the association between the four selected PCSK9 variants and cIMT in the UK cohort, as it suggests a possible role of PCSK9 SNPs or gene polymorphisms in atherosclerosis and in its preventive strategies.
Contesto e scopo: La proproteina convertasi subtilisina/kexina di tipo 9 (PCSK9), uno dei principali regolatori del metabolismo del recettore delle LDL, è stata associata allo sviluppo di aterosclerosi. Diversi studi hanno confermato tale associazione attraverso vie lipidiche e non lipidiche. Tuttavia, le relazioni dirette tra PCSK9 circolante e marcatori di aterosclerosi subclinica e clinica sono ancora da chiarire. Pertanto, abbiamo valutato le relazioni tra i livelli plasmatici di PCSK9 ed alcuni indici di aterosclerosi subclinica (marcatori di imaging) e clinica (eventi vascolari; EV). Un altro obiettivo è stato l'identificazione dei determinanti indipendenti di PCSK9, con particolare attenzione ai lipidi e ai biomarcatori infiammatori. Infine, abbiamo anche valutato la relazione tra alcuni marcatori di imaging e quattro SNPs del gene PCSK9, noti per essere associati alla presenza di bassi livelli di colesterolo LDL. Per validare i risultati ottenuti in quest’ultima parte, le analisi genetiche sono state replicate in una coorte indipendente reclutata nel Regno Unito (UK). Metodi: Lo studio è stato realizzato sfruttando le banche dati, biobanche e la banca di immagini dello studio IMPROVE. 3,703 soggetti europei (54-79 anni; 48% uomini), privi di EV al basale e definiti ad alto rischio per la presenza di almeno tre fattori di rischio vascolare, sono stati reclutati e seguiti per 36 mesi. PCSK9 è stata misurata tramite ELISA e trasformata in logaritmo prima delle analisi. I marcatori di imaging convenzionali [spessore medio-intimale carotideo (cIMT, dall’inglese intima-media thickness) e dimensione della placca carotidea] ed emergenti [cambiamento di cIMT nel tempo, ecolucenza dello spessore del complesso medio intimale della carotide comune misurato in zone libere da placca (PF CC-IMTmean), ecolucenza della placca più grande rilevata in tutto l'albero carotideo e punteggio di calcio carotideo (cCS, dall’inglese carotid calcium score)] sono stati misurati su scansioni ultrasonografiche conservate nella banca di immagini. In particolare, l'ecolucenza è stata misurata in termini di mediana della scala dei grigi (GSM, dall’inglese grey scale median) della distribuzione dei pixel di una specifica regione d’interesse, mentre il cCS è stato calcolato come somma delle lunghezze dei coni d’ombra acustici generati dal calcio all'interno delle placche carotidee. I lipidi sono stati misurati con metodi enzimatici (ad eccezione del colesterolo LDL che è stato calcolato con la formula di Friedewald). Tra i marcatori infiammatori, la proteina C reattiva ad alta sensibilità (hs-PCR) è stata misurata con la turbidimetria, mentre il conteggio dei globuli bianchi (WBC, dall’inglese white blood cells) e la formula leucocitaria sono stati misurati localmente. Tutti i soggetti dello studio IMPROVE e della coorte UK (n=22,179; 48 % uomini) sono stati genotipizzati. Risultati: Nell'analisi univariata, PCSK9 correlava positivamente con colesterolo totale, LDL e HDL e con trigliceridi e basofili (tutte le p <0.0001), mentre correlava negativamente con neutrofili ed eosinofili (entrambe le p=0.04). Le correlazioni positive osservate con hs-PCR e con il conteggio dei WBC erano solo vicine alla significatività statistica (p=0.060 e 0.064, rispettivamente). Le terapie con fibrati o statine (positivamente; entrambe le p <0.0001), così come sesso maschile e storia familiare di diabete (negativamente; entrambe le p <0.05) erano i predittori indipendenti più forti dei livelli plasmatici di PCSK9. Nell'analisi non aggiustata, si osservava una correlazione negativa tra PCSK9 e variabili basali di cIMT (IMTmean, IMTmax, IMTmean-max, e PF CC-IMTmean), una correlazione negativa tra PCSK9 e la variazione di cIMT nel tempo (Fastest-IMTmax-progr) e cCS (tutte le p ≤0.01), mentre si osservava un trend positivo tra PCSK9 e GSM sia del PF CC-IMTmean che della placca carotidea (entrambe le p ≤0.0001). Il cCS (positivamente) e il GSM del PF CC-IMTmean (positivamente) erano associati significativamente (o vicini alla significatività) a PCSK9 in diversi modelli multivariati (tutte le p ≤0.064). Tutte le correlazioni osservate all’analisi univariata tra PCSK9 e le variabili basali di cIMT, Fastest-IMTmax-progr e GSM della placca carotidea perdevano la significatività statistica dopo aggiustamento delle stesse per età, sesso, latitudine ed altri potenziali confondenti. Durante il follow-up [mediana (intervallo interquartile): 3.01 (2.98; 3.12) anni], sono stati registrati 215 EV: 125 coronarici, 73 cerebrali e 17 EV periferici. Tra questi, 37 erano eventi hard (infarto miocardico, morte improvvisa ed ictus). Nell'analisi non aggiustata, PCSK9 era associata positivamente ad eventi combinati e coronarici (entrambe le p <0.01), ma non ad eventi cerebrovascolari. Anche in questo caso, tuttavia, tutte le associazioni osservate perdevano la significatività statistica dopo aggiustamento delle analisi per età, sesso e stratificazione per latitudine. La mancanza di associazione con EV era confermata anche nel modello aggiustato per tutti i fattori confondenti considerati e nelle analisi focalizzate sugli eventi hard. Per quanto riguarda il ruolo delle varianti genetiche, nessuno dei quattro SNPs considerati correlava con cIMT (IMTmean, IMTmax, IMTmean-max) quando l'analisi era effettuata nei soggetti reclutati nello studio IMPROVE. La variante rs11591147, invece, correlava negativamente con l’IMTmax misurato nella popolazione UK (p=0.002). Combinando le quattro varianti genetiche in uno score, la relazione con cIMT era non significativa nello studio IMPROVE, mentre era negativa e significativa nella popolazione UK (tutte le p <0.01). Conclusioni: I livelli plasmatici di PCSK9 non sono associati a EV. Per quanto riguarda i marcatori dell'aterosclerosi subclinica, i livelli plasmatici di PCSK9 non sono associati né alla dimensione della lesione, né all'ecolucenza della placca carotidea, ma sono associati all'ecolucenza dello spessore della parete carotidea e al carotid calcium score. Ulteriori studi sono pertanto necessari per comprendere meglio il ruolo di tale proproteina nell'ecolucenza dello spessore della parete carotidea e nel carotid calcium score. La terapia con fibrati o statine, così come il sesso maschile e la storia familiare di diabete sono i predittori indipendenti più forti di PCSK9 circolante. È stata inoltre confermata l'associazione, precedentemente osservata, tra PCSK9 circolante e alcuni marcatori lipidici ed infiammatori. La relazione tra i livelli plasmatici di PCSK9 ed altri marcatori infiammatori (neutrofili, basofili ed eosinofili) merita ulteriori indagini, così come merita ulteriori indagini l’associazione tra le quattro varianti genetiche di PCSK9 selezionate e il cIMT nella coorte britannica, in quanto lascia intravvedere un possibile ruolo di SNPs o polimorfismi genici di PCSK9 nell’aterosclerosi e nelle strategie della sua prevenzione.
RELATIONSHIP BETWEEN PLASMA LEVELS OF PCSK9, VASCULAR EVENTS AND MARKERS OF SUBCLINICAL ATHEROSCLEROSIS AND INFLAMMATION
COGGI, DANIELA
2021
Abstract
Background and purpose: Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the main regulators of LDL receptor metabolism, has been associated with atherosclerosis development. Several studies have confirmed such association through both lipid and non-lipid pathways. However, the direct relationships between circulating PCSK9 and markers of subclinical and clinical atherosclerosis are still matter of debate. Therefore, we investigated the relationships between plasma PCSK9 levels and some indexes of subclinical (imaging markers) and clinical (vascular events; VEs) atherosclerosis. Another objective was the identification of the independent determinants of PCSK9, with particular attention to lipids and inflammatory biomarkers. Finally, we also assessed the relationship between some imaging markers and four SNPs of the PCSK9 gene, known to be associated with the presence of low levels of LDL-cholesterol. In order to validate the results obtained in this last part, the genetic analyses were replicated in an independent cohort recruited in the United Kingdom (UK). Methods: The study was carried out taking advantage of databases, biobanks and imaging-bank of the IMPROVE study. 3,703 European subjects (54-79 years; 48% men), free of VEs at baseline and defined at high risk for the presence of at least three vascular risk factors, were recruited and followed-up for 36 months. PCSK9 was measured by ELISA and log-transformed prior to analyses. Conventional imaging markers [carotid intima-media thickness (cIMT) and carotid plaque-size], and emerging imaging markers [cIMT change over time, echolucency of the intima-media thickess of common carotid measured in plaque free areas (PF CC-IMTmean), echolucency of the biggest plaque detected in the whole carotid tree, and carotid calcium score (cCS)] were measured on ultrasonographic scans stored in the imaging-bank. In particular, echolucency was measured in terms of grey scale median (GSM) of pixels distribution of a specific region of interest, whereas cCS was calculated as sum of lengths of acoustic shadow cones generated by calcium within carotid plaques. Lipids were measured with enzymatic methods (except for LDL-cholesterol, which was calculated by Friedewald's formula). Among inflammatory markers, high-sensitivity C-reactive protein (hs-CRP) was measured by turbidimetry, whereas white blood cells (WBC) count and the leukocyte formula had already been measured locally. All the IMPROVE study and UK (n=22,179; 48% men) subjects have been genotyped. Results: In the univariate analysis, PCSK9 was positively correlated with total, LDL-, and HDL-cholesterol, and with triglycerides and basophils (all p <0.0001), whereas was negatively correlated with neutrophils and eosinophils (both p=0.04). The positive correlations observed with hs-CRP and WBC count were just close to the statistical significance (p=0.060 and 0.064, respectively). Fibrates or statins therapies (positively; both p <0.0001), as well as male sex and family history of diabetes (negatively; both p <0.05) were the strongest independent predictors of plasma PCSK9 levels. In the unadjusted analysis, a negative correlation was observed between PCSK9 levels and basal cIMT variables (i.e. carotid IMTmean, IMTmax, IMTmean-max, and PF CC-IMTmean), a negative correlation between PCSK9 and cIMT change over time (Fastest-IMTmax-progr) and cCS (all p ≤0.01), whereas a positive trend was observed between PCSK9 and GSM of both PF CC-IMTmean and carotid plaque (both p ≤0.0001). The cCS (positively) and the GSM of PF CC-IMTmean (positively) were significantly (or almost significantly) associated with PCSK9 in several multivariate models (all p ≤0.064). All correlations observed in the univariate analysis between PCSK9 and basal cIMT variables, Fastest-IMTmax-progr and GSM of carotid plaque lost the statistical significance after adjustment for age, sex, latitude, and other potential confounders. During the follow-up [median (interquartile range): 3.01 (2.98; 3.12) years], 215 VEs were recorded: 125 coronary, 73 cerebral and 17 peripheral VEs. Among these, 37 were hard events (i.e. myocardial infarction, sudden death and stroke). In the unadjusted analysis, PCSK9 was positively associated with combined and coronary events (both p <0.01), but not with cerebrovascular events. Also in this case, however, all the associations observed lost the statistical significance after adjustment of the analyses for age, sex, and stratification for latitude. The lack of association with VEs was confirmed also in the model adjusted for all confounding factors considered, and in the analyses focused on hard events. With regard to the role of genetic variants, none of the four SNPs considered was correlated with cIMT (i.e. IMTmean, IMTmax, IMTmean-max) when the analysis was performed in the subjects recruited in the IMPROVE study. The rs11591147 variant, by contrast, was negatively correlated with IMTmax measured in the UK population (p=0.002). By combining the four genetic variants in a score, the relationship with cIMT was not significant in the IMPROVE study, whereas was negative and significant in the UK population (all p <0.01). Conclusions: Plasma PCSK9 levels are not associated with VEs. Regarding markers of subclinical atherosclerosis, PCSK9 levels are associated neither with lesion size, nor with carotid plaque echolucency, but are associated with echolucency of carotid wall thickness and with carotid calcium score. Therefore, further studies are needed to better understand the role of such circulating proprotein in carotid wall thickness echolucency and in carotid calcium score. Fibrates or statins therapies, as well as male sex and family history of diabetes are the strongest independent predictors of PCSK9 levels. The associations, previously observed, between circulating PCSK9 and some lipid and inflammatory markers have been confirmed. The relationship between plasma levels of PCSK9 and other inflammatory markers (neutrophils, basophils and eosinophils) deserves further investigation, as does the association between the four selected PCSK9 variants and cIMT in the UK cohort, as it suggests a possible role of PCSK9 SNPs or gene polymorphisms in atherosclerosis and in its preventive strategies.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R12015.pdf
Open Access dal 02/08/2022
Dimensione
1.91 MB
Formato
Adobe PDF
|
1.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/126581
URN:NBN:IT:UNIMI-126581