Microbial pathogens represent nowadays a serious threat for both public health and the agrifood sector. Indeed, the negative effects of microbial infections are not limited to the illnesses and symptoms caused by pathogens on humans, but they also include plant diseases targeting the most important cultures and hindering the food supply chain in the pre- and post- harvest phases. Bacterial pathogens are responsible for around 14 million deaths every year while phytopathogenic fungi (as Pyricularia oryzae) keep challenging commercial agriculture causing significant crop losses and economic damages every year. Moreover, in the past decades, the overuse and misuse of antibiotics have led to the increasing spread of antimicrobial resistance, an issue that should be urgently addressed through the identification of innovative treatments. In the search for novel, resistance-breaking antimicrobials, rational design of multi-target drugs and agrochemicals represents a strategic tool. Synergistic combinations of bioactive scaffolds able to inhibit multiple targets simultaneously, is expected to provide improved bioactivity, while mitigating the risk of resistance. Phytoalexins, namely secondary metabolites produced by living organisms in response to stress factors, could play a key role in this scenario. Natural phytoalexins are often endowed with a plethora of biological activities (e.g. antibacterial, antifungal, antioxidant), exerted trough different mechanisms of actions, and they can therefore be referred to as built-in multi-target directed ligands. This makes them particularly appealing for the design of hybrid compounds. In this perspective, a full comprehension of phytoalexins biological activities and mechanisms of action would allow their profitable employment for the development of new, sustainable, multi-target antimicrobials. The aim of the present Ph.D. project was the identification of naturally occurring bioactive scaffolds to design novel, nature-inspired antimicrobial agents. Four classes of phytoalexins were considered in this study: myxochelins, phenolamides, stilbenoids, and strobilurins. Chemo-enzymatic procedures were set up to prepare the most promising compounds (and their analogues) from each class in amounts sufficient for their biological evaluation against phytopathogenic fungi and bacterial pathogens in order to perform structure-activity relationship studies. The antioxidant and anti-inflammatory properties of phytoalexins (i.e. stilbenoids) were also investigated to explore their role in cell protection. To further expand our investigation, a study concerning the identification of stilbenoids molecular targets in bacterial pathogens was included in this work. To this purpose, stilbenoids-based affinity probes were developed to apply the affinity-based protein profiling (Af-BPP) approach to study compound-protein interactions. Synthetic efforts were devoted to functionalizing monomeric and dimeric stilbenoids without affecting the hydroxyl groups. The second part of the project focused on the design of hybrid compounds by merging different bioactive scaffolds to enhance biological activity and overcome resistance mechanisms. The rational design of hybrid compounds involved the selection and combination of both natural and synthetic scaffolds, such as stilbenoid skeleton and strobilurins’ pharmacophore (-methoxyacrylate) on one side, and the pharmacophore from succinate dehydrogenase inhibitors (SDHI), a class of synthetic agrochemicals, on the other. In parallel with these activities, target-based virtual screening of libraries of nature-derived and synthetic molecules was also employed for the idntification of new bioactive scaffolds.
I patogeni microbici rappresentano oggi una seria minaccia sia per la salute pubblica che per il settore agroalimentare. Infatti, gli effetti negativi delle infezioni microbiche non si limitano alle malattie e ai sintomi causati dai patogeni negli esseri umani, ma includono anche malattie delle piante che colpiscono le colture più importanti e ostacolano la catena di approvvigionamento alimentare nelle fasi pre- e post-raccolta. I patogeni batterici sono responsabili di circa 14 milioni di morti ogni anno, mentre i funghi fitopatogeni (come, ad esempio, Pyricularia oryzae) mettono costantemente a dura prova il settore agricolo causando ogni anno perdite di raccolto e danni economici significativi. Inoltre, negli ultimi decenni, l'uso eccessivo e improprio di antibiotici ha portato alla crescente diffusione della resistenza antimicrobica, un problema che dovrebbe essere urgentemente affrontato attraverso l'identificazione di trattamenti innovativi. Nella ricerca di nuovi antimicrobici, il design razionale di farmaci e agrofarmaci multi-target rappresenta uno strumento strategico. Si assume infatti che combinazioni sinergiche di scaffold bioattivi capaci di inibire simultaneamente più bersagli forniscano una migliore bio-attività, riducendo al contempo il rischio di resistenza. Le fitoalessine, ossia metaboliti secondari prodotti da organismi viventi in risposta a fattori di stress, potrebbero svolgere un ruolo chiave in questo scenario. Le fitoalessine naturali sono spesso dotate di una vasta gamma di attività biologiche (ad esempio antibatteriche, antifungine, antiossidanti) esercitate attraverso diversi meccanismi d'azione, e possono quindi essere considerate ligandi multi-target intrinseci. Questo le rende particolarmente interessanti per il design di composti ibridi. In questa prospettiva, una piena comprensione delle attività biologiche delle fitoalessine e dei loro meccanismi d'azione permetterebbe il loro proficuo impiego per lo sviluppo di nuovi antimicrobici sostenibili e multi-target. L'obiettivo del presente progetto di dottorato è stata appunto l'identificazione di scaffold bioattivi naturali per progettare nuovi agenti antimicrobici ispirati alla natura. In questo studio sono state considerate quattro classi di fitoalessine: mixocheline, fenolamidi, stilbenoidi e strobilurine. Sono state messe a punto procedure chemo-enzimatiche per preparare i composti più promettenti (e i loro analoghi) di ciascuna classe in quantità sufficienti per la loro valutazione biologica contro funghi fitopatogeni e patogeni batterici, al fine di eseguire studi di relazione struttura-attività. Sono state inoltre studiate le proprietà antiossidanti e antinfiammatorie di alcune fitoalessine (ad esempio gli stilbenoidi) per esplorare il loro ruolo nella protezione cellulare durante le infezioni batteriche. Per ampliare ulteriormente la nostra indagine, è stato incluso in questo lavoro uno studio sull'identificazione dei target molecolari degli stilbenoidi nei patogeni batterici. A tal fine, sono state sviluppate sonde di affinità basate sugli stilbenoidi per applicare l'approccio dell'affinity-based protein profiling (Af-BPP) al fine di studiare le interazioni fitoalessina-proteina. Gli sforzi sintetici sono stati dedicati alla funzionalizzazione di stilbenoidi monomerici e dimerici senza influire sui gruppi idrossilici. La seconda parte del progetto si è concentrata sul design di composti ibridi combinando diversi scaffold bioattivi per migliorare l'attività biologica e superare i meccanismi di resistenza. Il design razionale dei composti ibridi ha comportato la selezione e la combinazione di scaffold sia naturali che sintetici, come lo scheletro stilbenoide e il farmacoforo delle strobilurine (β-metossi-acrilato) da un lato, e il farmacoforo degli inibitori della succinato deidrogenasi (SDHI), una classe di agrofarmaci sintetici, dall'altro. Parallelamente a queste attività, è stato impiegato il target-based virtual screening di librerie di molecole di derivazione naturale e sintetica per l'identificazione di nuovi scaffold bioattivi.
NATURE-INSPIRED COMPOUNDS AS MULTI-TARGET DIRECTED LIGANDS
PINNA, CECILIA
2024
Abstract
Microbial pathogens represent nowadays a serious threat for both public health and the agrifood sector. Indeed, the negative effects of microbial infections are not limited to the illnesses and symptoms caused by pathogens on humans, but they also include plant diseases targeting the most important cultures and hindering the food supply chain in the pre- and post- harvest phases. Bacterial pathogens are responsible for around 14 million deaths every year while phytopathogenic fungi (as Pyricularia oryzae) keep challenging commercial agriculture causing significant crop losses and economic damages every year. Moreover, in the past decades, the overuse and misuse of antibiotics have led to the increasing spread of antimicrobial resistance, an issue that should be urgently addressed through the identification of innovative treatments. In the search for novel, resistance-breaking antimicrobials, rational design of multi-target drugs and agrochemicals represents a strategic tool. Synergistic combinations of bioactive scaffolds able to inhibit multiple targets simultaneously, is expected to provide improved bioactivity, while mitigating the risk of resistance. Phytoalexins, namely secondary metabolites produced by living organisms in response to stress factors, could play a key role in this scenario. Natural phytoalexins are often endowed with a plethora of biological activities (e.g. antibacterial, antifungal, antioxidant), exerted trough different mechanisms of actions, and they can therefore be referred to as built-in multi-target directed ligands. This makes them particularly appealing for the design of hybrid compounds. In this perspective, a full comprehension of phytoalexins biological activities and mechanisms of action would allow their profitable employment for the development of new, sustainable, multi-target antimicrobials. The aim of the present Ph.D. project was the identification of naturally occurring bioactive scaffolds to design novel, nature-inspired antimicrobial agents. Four classes of phytoalexins were considered in this study: myxochelins, phenolamides, stilbenoids, and strobilurins. Chemo-enzymatic procedures were set up to prepare the most promising compounds (and their analogues) from each class in amounts sufficient for their biological evaluation against phytopathogenic fungi and bacterial pathogens in order to perform structure-activity relationship studies. The antioxidant and anti-inflammatory properties of phytoalexins (i.e. stilbenoids) were also investigated to explore their role in cell protection. To further expand our investigation, a study concerning the identification of stilbenoids molecular targets in bacterial pathogens was included in this work. To this purpose, stilbenoids-based affinity probes were developed to apply the affinity-based protein profiling (Af-BPP) approach to study compound-protein interactions. Synthetic efforts were devoted to functionalizing monomeric and dimeric stilbenoids without affecting the hydroxyl groups. The second part of the project focused on the design of hybrid compounds by merging different bioactive scaffolds to enhance biological activity and overcome resistance mechanisms. The rational design of hybrid compounds involved the selection and combination of both natural and synthetic scaffolds, such as stilbenoid skeleton and strobilurins’ pharmacophore (-methoxyacrylate) on one side, and the pharmacophore from succinate dehydrogenase inhibitors (SDHI), a class of synthetic agrochemicals, on the other. In parallel with these activities, target-based virtual screening of libraries of nature-derived and synthetic molecules was also employed for the idntification of new bioactive scaffolds.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R12850.pdf
accesso aperto
Dimensione
9.4 MB
Formato
Adobe PDF
|
9.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/156742
URN:NBN:IT:UNIMI-156742