The main research focus of this project has been the bottom-up synthesis of Boron and Nitrogen-doped Carbon dots (BNC nanodots) by thermal treatment of molecular precursors under hydrothermal, microwave, or solvent-free conditions. The boron and nitrogen doping strategies were explored using different carbon, boron, and nitrogen molecular sources. The effect of reactants’ ratio, temperature, pressure, and media on heteroatom doping, product composition, size, structure, and photophysical properties of final BNC nanodots was investigated. Among the exploited synthesis methods, microwave treatment of citric acid, boric acid, and urea (190oC, 240 psi, 1:1:1 CA:BA:U) allowed the most successful production of BNC nanodots in a reproducible way, with the possibility to go also for scaling-up. The so prepared BNC nanodots contained the 5.3 % in atoms of boron and nitrogen and showed excellent PL properties such as a high quantum yield (42%), blue excitation-wavelength-independent light emission, and uniform size distribution, confirmed by the set of microscopic and spectroscopic techniques (TEM, AFM, XPS, FTIR, UV-vis, FL). The purity of the synthesized nanodots, thanks to the removal of molecular intermediates and other species, was a crucial aspect of our research. We ensured this through a rigorous dialysis process and by checking the purification progress with 1H-NWR, UV-vis, and FL spectroscopy. This purification monitoring not only assisted in the interpretation of photophysical properties but also allowed us to confidently assign them to nanoparticles, and not to molecular contributions, thereby enhancing the reliability of our findings. After complete purification and characterization of them in solution, the most promising BNC nanodots were studied to understand their solid-state properties to meet optoelectronic device requirements. During the thin film fabrication, BNC nanodots underwent an aggregation-caused quenching of fluorescence. Creating a host-guest system where BNC nanodots (guest) are distributed in a solid polymeric matrix (host) allowed us to solve this issue. Employing this approach, device fabrication and efficient functioning of the device became possible. Therefore, highly fluorescent BNC nanodots, produced by a straightforward bottom-up microwave method from non-toxic and available precursors, were successfully incorporated in electrochemical cells obtaining a new white-light-emitter for optoelectronics.
Il principale obiettivo di questa ricerca è stato la sintesi bottom-up di nanodots carboniosi dopati con boro e azoto (BNC nanodots) tramite trattamento termico di precursori molecolari in condizioni idrotermiche, mediante microonde o in muffola in assenza di solventi. Sono state esplorate diverse strategie di doping utilizzando diverse fonti molecolari per ottenere i dots. Sono stati studiati gli effetti che il rapporto dei reagenti, la temperatura, la pressione e il mezzo di reazione hanno sul doping dei dots, sulle loro composizione, dimensione, struttura e proprietà fotofisiche. Tra i metodi di sintesi impiegati, il trattamento a microonde di acido citrico, acido borico e urea (190°C, 240 psi, rapporto in massa 1:1:1 CA:BA:U) ha permesso la produzione di BNC nanodots in modo riproducibile, con la possibilità di ulteriore scalabilità. I BNC nanodots così preparati contengono il 5.3% in atomi di boro e azoto e hanno eccellenti proprietà di luminescenza, come un alto rendimento quantico (42%), emissione di luce blu indipendente dalla lunghezza d'onda di eccitazione e una distribuzione dimensionale uniforme, confermata da una serie di tecniche microscopiche e spettroscopiche (TEM, AFM, XPS, FTIR, UV-vis, FL). La purezza dei nanodots sintetizzati, inclusa la rimozione di intermedi molecolari e altre specie fluorescenti, è stata un aspetto cruciale della nostra ricerca. Abbiamo garantito questo risultato attraverso un rigoroso processo di dialisi, monitorando i progressi della purificazione con spettroscopia 1H-NMR, UV-vis e FL. Questo controllo della purificazione non solo ha agevolato interpretazione delle proprietà fotofisiche, ma ci ha anche permesso di attribuire con sicurezza queste ultime alle nanoparticelle e non a contributi molecolari, migliorando così l'affidabilità dei nostri risultati. Dopo la completa purificazione e caratterizzazione in soluzione, il campione di BNC nanodots più promettente è stato sottoposto a ulteriori studi per determinarne le proprietà allo stato solido, per valutare se soddisfacesse i requisiti necessari per la costruzione di dispositivi optoelettronici. Durante la fabbricazione del film sottile, i BNC nanodots hanno dato quenching di fluorescenza causato dall'aggregazione. La creazione di un sistema “host-guest” in cui i nanodots (guest) sono distribuiti in una matrice polimerica solida (host) ci ha permesso di risolvere questo problema. Impiegando questo approccio, la fabbricazione del dispositivo e il funzionamento efficiente del dispositivo sono diventati possibili. Pertanto, i BNC nanodots altamente fluorescenti, prodotti con l’utilizzo del microonde mediante un semplice approccio bottom-up da precursori non tossici e disponibili, sono stati incorporati con successo nelle celle elettrochimiche come nuovi emettitori di luce bianca per l'optoelettronica.
BNC-nanodots fluorescenti per dispositivi optoelettronici: sintesi, caratterizzazione e loro applicazione
KOST, VERONIKA
2024
Abstract
The main research focus of this project has been the bottom-up synthesis of Boron and Nitrogen-doped Carbon dots (BNC nanodots) by thermal treatment of molecular precursors under hydrothermal, microwave, or solvent-free conditions. The boron and nitrogen doping strategies were explored using different carbon, boron, and nitrogen molecular sources. The effect of reactants’ ratio, temperature, pressure, and media on heteroatom doping, product composition, size, structure, and photophysical properties of final BNC nanodots was investigated. Among the exploited synthesis methods, microwave treatment of citric acid, boric acid, and urea (190oC, 240 psi, 1:1:1 CA:BA:U) allowed the most successful production of BNC nanodots in a reproducible way, with the possibility to go also for scaling-up. The so prepared BNC nanodots contained the 5.3 % in atoms of boron and nitrogen and showed excellent PL properties such as a high quantum yield (42%), blue excitation-wavelength-independent light emission, and uniform size distribution, confirmed by the set of microscopic and spectroscopic techniques (TEM, AFM, XPS, FTIR, UV-vis, FL). The purity of the synthesized nanodots, thanks to the removal of molecular intermediates and other species, was a crucial aspect of our research. We ensured this through a rigorous dialysis process and by checking the purification progress with 1H-NWR, UV-vis, and FL spectroscopy. This purification monitoring not only assisted in the interpretation of photophysical properties but also allowed us to confidently assign them to nanoparticles, and not to molecular contributions, thereby enhancing the reliability of our findings. After complete purification and characterization of them in solution, the most promising BNC nanodots were studied to understand their solid-state properties to meet optoelectronic device requirements. During the thin film fabrication, BNC nanodots underwent an aggregation-caused quenching of fluorescence. Creating a host-guest system where BNC nanodots (guest) are distributed in a solid polymeric matrix (host) allowed us to solve this issue. Employing this approach, device fabrication and efficient functioning of the device became possible. Therefore, highly fluorescent BNC nanodots, produced by a straightforward bottom-up microwave method from non-toxic and available precursors, were successfully incorporated in electrochemical cells obtaining a new white-light-emitter for optoelectronics.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Fluorescent BNC nanodots for optoelectronic devices synthesis, characterization, and application_Veronika Kost.pdf
embargo fino al 20/09/2025
Dimensione
14.59 MB
Formato
Adobe PDF
|
14.59 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/164303
URN:NBN:IT:UNITS-164303