This doctoral dissertation is focused on the synthesis of new uncharged radical precursors for the photogeneration of alkyl radicals and their applications in organic synthesis. A photocatalyst (PC, metal-based or organic) absorbs light irradiation being excited from the ground to an excited state (PC*). The synthesized uncharged radical precursors are oxidized (SET event) in the presence of the PC forming the corresponding unstable radical cations, that upon further fragmentation release radical intermediates. Those radicals are then added onto an electron-deficient olefin or (hetero)arene, via Giese addition, forming the corresponding radical adduct that will close the catalytic cycle in a second SET with the radical anion form of the PC. This second SET event generates the concomminant anion that is protonated obtaining the corresponding alkylated product. The employment of electroauxiliary groups to convert inert redox staring materials into redox active species is a well-known strategy. In this framework, we have successfully developed three different families of oxidizable neutral species (Chapters 2, 4 and 5): aryl silyl ethers (Eox: 1.7-2.0 V vs SCE) and aliphatic silyl ethers (Eox: 2.0-2.4 V vs SCE), 2-Substituted N-methyloxazolidines (Eox: 1.2-1.3 V vs SCE), 2-subsituted-1,3-N,N-dimethylimidazolidines (Eox: 1.0 V vs SCE). Those precursors were studied on the efficient generation of C and Si-centered radicals. Moreover, Late-Stage Functionalization of bioactive compounds and the synthesis of drug-like derivatives were succesfully achieved. Additionally, during the course of this thesis, two collaborating with different research groups, both in academia and industry, had been place: In Nöel Research Group (University of Amsterdam) new photocatalytic processes for C1 homologation and beta-arylethylamines products preparation were developed by using redox active esteres as reducible uncharged radical precursors on the functionalization of sulfonyl hydrazones. The reactions were performed in batch and in flow. Additionally, complex polypeptides were succesfully studied as substrates (Chapter 3). In collaboration with Johnson & Johnson (Janssen), the developed methodologies were tested and implemented in a fully automated photochemical process for the synthesis of libraries of compounds, by using state-of-the-art chemical technologies as flow chemistry, automation and High-Throughput Experimentation (Chapter 6).
Questa tesi di dottorato è focalizzata sulla sintesi di nuovi precursori radicali non caricati per la fotogenerazione dei radicali alchilici e le loro applicazioni nella sintesi organica. Un fotocatalizzatore (PC, organico o metallico) assorbe l'irradiazione luminosa che viene eccitato ad uno stato eccitato (PC*). I precursori radicali non caricati sintetizzati vengono ossidati (evento SET) in presenza del PC formando i corrispondenti cationi radicali instabili, che dopo ulteriore frammentazione rilasciano radicali intermedi. Questi radicali vengono poi aggiunti su un'olefina o (etero)arena deficiente di elettroni, tramite addizione di Giese, formando l'addotto radicale corrispondente che chiuderà il ciclo catalitico in un secondo SET con la forma anionica radicale del PC. Questo secondo evento SET genera l'anione concomitante che viene protonato ottenendo il prodotto alchilato corrispondente. L'impiego di gruppi elettro-ausiliari per convertire i materiali inerti redox in specie attive redox è una strategia ben nota. In questo contesto, abbiamo sviluppato con successo tre diverse famiglie di specie neutre ossidabili (Capitoli 2, 4 e 5): aryl silyl ethers (Eox: 1,7-2,0 V vs SCE) ed aliphatic silyl ethers (Eox: 2,0-2,4 V vs SCE), 2-Substituted N-methyloxazolidines (Eox: 1,2-1,3 V vs SCE), 2-subsituted-1,3-N,N-dimethylimidazolidines(Eox: 1,0 V vs SCE). Questi precursori sono stati studiati sulla generazione efficiente di radicali C e Si. Inoltre, processi Late-Stage Functionalization dei composti bioactive e la sintesi dei derivati dei farmaci sono stati raggiunti con successo. Inoltre, nel corso di questa tesi si sono svolte due collaborazioni con diversi gruppi di ricerca, sia accademici che industriali: Nel gruppo di ricerca Nöel Researchs Lab (Università di Amsterdam) sono stati sviluppati nuovi processi fotocatalitici per l'omologazione C1 e la preparazione di prodotti di beta-ariletilamine utilizzando redox active esters come precursori radicali non caricabili riducibili sulla funzionalizzazione degli sulfonyl hydrazones. Le reazioni sono state effettuate a lotti e a flusso continuo. Inoltre, i polipeptidi complessi sono stati studiati con successo come substrati (Capitolo 3). In collaborazione con Johnson & Johnson (Janssen), le metodologie sviluppate sono state testate e implementate in un processo fotochimico completamente automatizzato per la sintesi di librerie di composti, utilizzando tecnologie chimiche all'avanguardia come flow chemistry, automatizzazione e High-Throughput Experimentation (Capitolo 6).
New uncharged precursors for photoredox-mediated radical generation
LUGUERA RUIZ, ADRIAN
2024
Abstract
This doctoral dissertation is focused on the synthesis of new uncharged radical precursors for the photogeneration of alkyl radicals and their applications in organic synthesis. A photocatalyst (PC, metal-based or organic) absorbs light irradiation being excited from the ground to an excited state (PC*). The synthesized uncharged radical precursors are oxidized (SET event) in the presence of the PC forming the corresponding unstable radical cations, that upon further fragmentation release radical intermediates. Those radicals are then added onto an electron-deficient olefin or (hetero)arene, via Giese addition, forming the corresponding radical adduct that will close the catalytic cycle in a second SET with the radical anion form of the PC. This second SET event generates the concomminant anion that is protonated obtaining the corresponding alkylated product. The employment of electroauxiliary groups to convert inert redox staring materials into redox active species is a well-known strategy. In this framework, we have successfully developed three different families of oxidizable neutral species (Chapters 2, 4 and 5): aryl silyl ethers (Eox: 1.7-2.0 V vs SCE) and aliphatic silyl ethers (Eox: 2.0-2.4 V vs SCE), 2-Substituted N-methyloxazolidines (Eox: 1.2-1.3 V vs SCE), 2-subsituted-1,3-N,N-dimethylimidazolidines (Eox: 1.0 V vs SCE). Those precursors were studied on the efficient generation of C and Si-centered radicals. Moreover, Late-Stage Functionalization of bioactive compounds and the synthesis of drug-like derivatives were succesfully achieved. Additionally, during the course of this thesis, two collaborating with different research groups, both in academia and industry, had been place: In Nöel Research Group (University of Amsterdam) new photocatalytic processes for C1 homologation and beta-arylethylamines products preparation were developed by using redox active esteres as reducible uncharged radical precursors on the functionalization of sulfonyl hydrazones. The reactions were performed in batch and in flow. Additionally, complex polypeptides were succesfully studied as substrates (Chapter 3). In collaboration with Johnson & Johnson (Janssen), the developed methodologies were tested and implemented in a fully automated photochemical process for the synthesis of libraries of compounds, by using state-of-the-art chemical technologies as flow chemistry, automation and High-Throughput Experimentation (Chapter 6).File | Dimensione | Formato | |
---|---|---|---|
Luguera Ruiz_PhD thesis cycle XXXVII.pdf
accesso aperto
Dimensione
12.91 MB
Formato
Adobe PDF
|
12.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/164662
URN:NBN:IT:UNIPV-164662