The activity dependent adjustment of synaptic strength (synaptic plasticity) involves the reorganization of post-synaptic proteins. The fast diffusion of synaptic proteins has been shown to play an important role in such molecular rearrangements. Taking advantage of single particle tracking (SPT) and fluorescence recovery after photobleaching (FRAP) techniques, it has been demonstrated that during inhibitory long-term potentiation (iLTP) the scaffold protein gephyrin and GABAA receptors are accumulated and immobilized at post-synaptic inhibitory sites.

GABAergic synaptic protein dynamics measured by spectroscopic approaches.

COLACI, FRANCESCO
2018

Abstract

The activity dependent adjustment of synaptic strength (synaptic plasticity) involves the reorganization of post-synaptic proteins. The fast diffusion of synaptic proteins has been shown to play an important role in such molecular rearrangements. Taking advantage of single particle tracking (SPT) and fluorescence recovery after photobleaching (FRAP) techniques, it has been demonstrated that during inhibitory long-term potentiation (iLTP) the scaffold protein gephyrin and GABAA receptors are accumulated and immobilized at post-synaptic inhibitory sites.
28-feb-2018
Inglese
BARBERIS, ANDREA
BENFENATI, FABIO
LANZANO', LUCA
ABBRUZZESE, GIOVANNI
Università degli studi di Genova
File in questo prodotto:
File Dimensione Formato  
phdunige_2975513.pdf

Open Access dal 01/03/2021

Dimensione 15 MB
Formato Adobe PDF
15 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/165244
Il codice NBN di questa tesi è URN:NBN:IT:UNIGE-165244