In the last twenty years, cosmology has become a precision science. Since the COBE era, a wealth of data, along with advances in theoretical interpretation and numerical analysis, provided us with a convincing model of the content and evolution of our Universe. It is now generally accepted that an early period of inflation produced a nearly homogeneous flat Universe, with small inhomogeneities (of quantum origin!) which can be seen as temperature anisotropies in the cosmic microwave background (CMB), and which grow by gravitational instability to form the large scale structure (LSS) of the Universe.

Dark Energy and Non-Gaussianity Through the Large Scale Structure

D'Amico, Guido
2010

Abstract

In the last twenty years, cosmology has become a precision science. Since the COBE era, a wealth of data, along with advances in theoretical interpretation and numerical analysis, provided us with a convincing model of the content and evolution of our Universe. It is now generally accepted that an early period of inflation produced a nearly homogeneous flat Universe, with small inhomogeneities (of quantum origin!) which can be seen as temperature anisotropies in the cosmic microwave background (CMB), and which grow by gravitational instability to form the large scale structure (LSS) of the Universe.
28-lug-2010
Inglese
Creminelli, Paolo
SISSA
File in questo prodotto:
File Dimensione Formato  
1963_5032_thesis_damico-3.pdf

accesso aperto

Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/166611
Il codice NBN di questa tesi è URN:NBN:IT:SISSA-166611