A coherent system on a smooth projective curve C consists of a pair (E,V) where E is a vector bundle on C (of rank n and degree d) and V is a subspace (of dimension k) of $H^0(C,E)$. For each triple (n,d,k) there is a family of moduli spaces of coherent systems, depending on a real positive parameter $\alpha$. It is known that these moduli spaces change only if we pass through a finite set of critical values, so we have a finite number of distinct moduli spaces labeled according to the corresponding interval in the real line. The final moduli space is in general very simple to study, while not so much is known about the intermediate moduli spaces and the first one (which has strong relations with the Brill-Noether locus $B(n,d,k)$). In particular, an interesting open problem is that of computing the Hodge-Deligne polynomials of such moduli spaces. In the present work we get some explicit results in the cases (n=2,k=1) and (n=3,k=1), together with some general techniques that in principle could be used to tackle also more complicated cases. We give also some partial results on the cases (n=4,k=1) and (n=2,k=2).
The Hodge-Deligne polynomials of some moduli spaces of coherent systems
Tommasini, Matteo
2012
Abstract
A coherent system on a smooth projective curve C consists of a pair (E,V) where E is a vector bundle on C (of rank n and degree d) and V is a subspace (of dimension k) of $H^0(C,E)$. For each triple (n,d,k) there is a family of moduli spaces of coherent systems, depending on a real positive parameter $\alpha$. It is known that these moduli spaces change only if we pass through a finite set of critical values, so we have a finite number of distinct moduli spaces labeled according to the corresponding interval in the real line. The final moduli space is in general very simple to study, while not so much is known about the intermediate moduli spaces and the first one (which has strong relations with the Brill-Noether locus $B(n,d,k)$). In particular, an interesting open problem is that of computing the Hodge-Deligne polynomials of such moduli spaces. In the present work we get some explicit results in the cases (n=2,k=1) and (n=3,k=1), together with some general techniques that in principle could be used to tackle also more complicated cases. We give also some partial results on the cases (n=4,k=1) and (n=2,k=2).File | Dimensione | Formato | |
---|---|---|---|
1963_6283_The Hodge-Deligne polynomials of some moduli spaces of coherent systems.pdf
accesso aperto
Dimensione
2.69 MB
Formato
Adobe PDF
|
2.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/167204
URN:NBN:IT:SISSA-167204