The thesis focuses on splitting-type theorems in RCD spaces. I and professor Nicola Gigli proved that if in an RCD space there exists a function with good gradient, Laplacian and Hessian then the space is isomorphic as metric measure space to a warped product space between the real line R and a space X'. Moreover we use this general result to prove two rigidity theorems (due to Li and Wang in the smooth setting) in case the space has positive spectrum of the Laplacian.

A general splitting principle on the non-smooth setting and applications

MARCONI, FABIO
2024

Abstract

The thesis focuses on splitting-type theorems in RCD spaces. I and professor Nicola Gigli proved that if in an RCD space there exists a function with good gradient, Laplacian and Hessian then the space is isomorphic as metric measure space to a warped product space between the real line R and a space X'. Moreover we use this general result to prove two rigidity theorems (due to Li and Wang in the smooth setting) in case the space has positive spectrum of the Laplacian.
7-feb-2024
Inglese
Gigli, Nicola
SISSA
Trieste
File in questo prodotto:
File Dimensione Formato  
PhD Thesis - Marconi Fabio.pdf

accesso aperto

Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/168753
Il codice NBN di questa tesi è URN:NBN:IT:SISSA-168753